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S U M M A RY

The majority of bacteria are organized in surface-associated communi-
ties, the so called biofilms. Crucial processes that drive the formation
of such biofilms are the motility of bacteria on a substrate, enabling
cells to reach each others vicinity, and attractive cell-cell-interactions,
driving the formation of microcolonies. These colonies, aggregates
consisting of thousands of cells, are the precursors of biofilms.

In this thesis we investigate the role of cell appendages, called type
IV pili, in the substrate motion of bacteria and the formation of bacte-
rial microcolonies. Therefore, we study the bacterial dynamics with
the help of experiments and theoretical models.

We introduce a novel simulation tool in the tradition of Brownian
dynamics simulations. In this computational model, that was develo-
ped alongside experimental observations, we study how explicit pili
dynamics, pili-substrate and pili–pili interactions drive the cell dyn-
amics. First, we apply our model to investigate how individual cells
move on a substrate due to cycles of protrusion and retraction of type
IV pili. We show that the characteristic features, in particular persis-
tent motion, can solely originate from collective interactions of pili.
Next, we perform experiments to study the coalescence of bacterial
microcolonies. With the help of experiments and our computational
model, we identify a spatially-dependent gradient of motility of cells
within the colony as the origin of a separation of time scale, a feature
which is in disagreement with the coalescence dynamics of fluid drop-
lets. Additionally, we show that altering the force generation of pili
can cause demixing of cells within bacterial aggregates. Finally, we
combine our knowledge of the substrate motion of cells and of the
pili-mediated interactions of colonies to identify the main processes
(aggregation, fragmentation and cell divisions) that drive assembly
of colonies. Starting from experiments, we develop a mathematical
model and observe excellent qualitative and quantitative agreement
to experimental data of the density of colonies of different sizes.

In summary, hand in hand with experiments, we develop theoreti-
cal frameworks to unravel the role of type IV pili in bacterial surface
motility, microcolony dynamics and colony formation.

iii
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Z U S A M M E N FA S S U N G

Die Mehrzahl der Bakterien sind organisiert in sogenannten Biofil-
men, Ansammlungen von Zellen assoziert mit den unterschiedlichsten
Oberflächen. Wichtige Prozesse, die die Bildung solcher Biofilme an-
treiben, sind die Bewegung einzelner Zellen über die Oberfläche, so
dass sich auch weit entfernte Zellen in direkte Nachbarschaft brin-
gen können, sowie anziehende Interaktionen zwischen Zellen, welche
die Bildung von Mikrokolonien verursachen. Solche Kolonien können
aus tausenden einzelnen Zellen bestehen und sind der Startpunkt für
die Bildung eines Biofilms.

In dieser Arbeit untersuchen wir die Rolle von Zellfortsätzen, den
sogenannten Typ IV Pili, in beiden Prozessen, der Bewegung über
eine Oberfläche und der Bildung von Kolonien. Dafür studieren wir
die Dynamik von Bakterien mithilfe von Experimenten und theoretis-
chen Modellen.

Wir haben ein neuartiges numerisches Werkzeug entwickelt, dass
es uns erlaubt, die Zelldynamik resultierend aus der expliziten Dyn-
amik von Pili, den durch Pili verursachten Kräfte und den direkten
Pili-Pili-Interaktionen zu studieren.

Zuerst wenden wir dieses Modell an um die Bewegung einzelner
Zellen auf einer Oberfläche zu untersuchen und erklären, wie die
kollektive Dynamik mehrerer Pili charakteristische Eigenschaften der
Oberflächenbewegung erzeugen. Insbesondere erklären wir, wie per-
sistente Bewegung der Zellen entstehen kann.

Daraufhin führen wir Experimente durch um die Koaleszenz von
bakteriellen Mikrokolonien zu studieren. Mithilfe dieser Experimente
und durch Vergleiche mit Simulationen können wir eine ortsabhängi-
gen Gradienten der Zellbewegung innerhalb von Kolonien als Ursa-
che einer Trennung der Zeitskalen der Koaleszenz erklären. Solch ein
Verhalten ist nicht mit der Dynamik von viskosen Tropfen zu erklären
ist. Weiterhin zeigen wir, wie Änderungen der Krafterzeugung inner-
halb der Zellen zur Entmischung von Zellpopulationen innerhalb von
Kolonien führen kann.

Zuletzt kombinieren wir unser gewonnenes Wissen über die Be-
wegung von Zellen auf einer Oberfläche und der Dynamik bzw. den
Interaktionen von Mikrokolonien, um die Bildung von Kolonien zu
untersuchen. Wir sind in der Lage, die wichtigsten involvierten Pro-
zesse zu identifizieren. Ein eigens entwickeltes mathematischen Mo-
dells bietet exzellente qualitative und quantitative Übereinstimmung
zum Experiment.

In dieser Arbeit entwickeln wir Hand in Hand mit Experimenten
verschiedenste theoretische Modelle um die Rolle von Typ IV Pili
während der bakteriellen Bewegung, der Koloniebildung und der Dy-
namik von Kolonien zu erklären.

v
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frühe Formen multizellulärer Organismen”. In: Forschungsbericht
2017 – Max-Planck-Institut für Physik komplexer Systeme, Dresden.
DOI: 10.17617/1.5Q.

• W. Pönisch, C.A. Weber, G. Juckeland, N. Biais, and V. Zabur-
daev. ”Multiscale modeling of bacterial colonies: how pili me-
diate the dynamics of single cells and cellular aggregates”. In:
New Journal of Physics 19.1 (2017), p. 015003. DOI: 10.1088/1367-
2630/aa5483.

• W. Pönisch and V. Zaburdaev. ”Relative distance between tra-
cers as a measure of diffusivity within moving aggregates”. In:
European Physical Journal B 91.27 (2018). DOI: 10.1140/epjb/e2017-
80347-5.

preprints

• W. Pönisch, K. Eckenrode, K. Alzurqa, H. Nasrollahi, C.A. We-
ber, V. Zaburdaev, and N. Biais. ”Pili mediated intercellular for-
ces shape heterogeneous bacterial microcolonies prior to multi-
cellular differentiation”. In: arXiv preprint arXiv: 1703.09659 (2017).

in preparation

• W. Pönisch, C.A. Weber, N. Biais, V. Zaburdaev. ”Colony forma-
tion of bacterial aggregates”.

• W. Pönisch, C.A. Weber and V. Zaburdaev. ”How bacterial cells
and colonies move on solid substrates”.

vii

[ April 9, 2018 at 11:33 – classicthesis version 4.2 ]



[ April 9, 2018 at 11:33 – classicthesis version 4.2 ]



A C K N O W L E D G E M E N T S

First, I would like to thank Vasily Zaburdaev for giving me the op-
portunity to work on this project and for his constant and helpful su-
pervision. Whenever I had a problem, his office door was open and
we could discuss any scientific question. Additionally, I am grateful
to Vasily for allowing me to follow my own ideas.
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1
I N T R O D U C T I O N

If one asks how bacteria move, one usually thinks about cells that use
rotating flagella to swim through water. In reality, most bacteria are
associated with substrates and developed different tools to efficiently
move over different surfaces, ranging from the human intestine [1],
over the ground of lakes [2] and up to the inside of nuclear reac-
tors [3].

In this chapter, we introduce the different ways how bacteria move
over surfaces (see section 1.1) and explain in detail how multiple long
cell appendages, the pili, can mediate the surface motility of cells. Af-
terwards, we give the required basics to study trajectories of particles
undergoing Brownian motion and discuss how this knowledge helps
us to investigate the motility of bacteria (see section 1.2). Next to the
motility of single cells, in this thesis we are also investigating how mi-
crocolonies, aggregates consisting of up to thousands of cells, behave.
In section 1.3 we describe general mechanisms of how microcolonies
form due to type IV pili. Additionally, we discuss the role of micro-
colonies as early biofilms and their connection to multicellularity, a
fundamental requirement for complex life. Before describing the ob-
jective and structure of the thesis in the final section 1.5, we introduce
the model organism studied in this thesis, the bacterium Neisseria go-
norrhoeae. In particular, we highlight important properties of these
cells and briefly explain the relevance of our results for an improved
medical understanding of this pathogenic organism (see section 1.4).

1.1 surface motility of bacteria

For the survival of many bacteria it is essential for them to move,
particularly in order to find nutrients. Additionally, the majority of
bacteria is organized in surface-associated communities, the so called
biofilms [4, 5] (see subsection 1.3.2). In order to form such a biofilm,
bacteria first have to come together.

A mechanism of motion, frequently used by many bacteria, is swim-
ming, driven by the rotation of a single flagellum or multiple fla-
gella [6–10]. Many swimming strategies involving flagella have deve-
loped during the evolution of life [11], for example ”run and tum-
ble” of Escherichia coli [6–10], ”run and reverse” of Shewanella putrefa-
ciens [12] or ”run-reverse-flick” of Vibrio alginolyticus [13, 14].

Besides the swimming in a free fluid, bacteria possess also a wide
range of tools to move directly on top of different types of substra-
tes, so diverse as eukaryotic cells [15], the outer hull of ships [16]
and clinical catheters [17]. A commonly known mechanism where
flagella play an important role during the collective motility of mul-
tiple bacteria on a substrate is called ”swarming” [18, 19]. During
this process, bacteria, which in most cases possess flagella [18, 20],

1

[ April 9, 2018 at 11:33 – classicthesis version 4.2 ]



2 introduction

Figure 1.1: Patterns formed by swarming bacteria for (a) Proteus mirabilis, (b)
Pseudomonas aeruginosa (c) Rhizobium etli (d) Serratia marcescens
(e) Salmonella Typhimurium and (f) Escherichia coli. Image taken
from [18].

grow and spread on top of a surface from which they can absorb nu-
trients. The swarming bacteria often differentiate in a way that cells
at the edge are hyperflagellated and form multicellular swarmer cell
rafts [21]. The wide range of resulting shapes of the swarming bacte-
ria is shown in figure 1.1.

Apart from flagella, bacteria frequently use so called ”type IV pili”
to mediate motility. Type IV pili are semiflexible cell appendages that
are found in a wide range of bacteria. Some examples are Pseudomo-
nas aeruginosa, Neisseria meningitidis and Myxococcus xanthus [22]. By
elongation, attachment and retraction, these pili cause the motility of
individual bacteria and cell aggregates, a mechanism reminiscent of a
grappling hook (see figure 1.2). Importantly, pili enable cells to move
independently of other cells on top of a substrate.

In this thesis, we study how pili mediate the motility of bacteria
and how they are involved in the formation of microcolonies. The sy-
stem we are investigating, the bacterium Neisseria gonorrhoeae, is solely
using type IV pili to move over substrates and to mediate attractive
cell-cell-interactions. For these reasons, we now want to discuss the
mechanisms involved in pili-mediated motility in greater detail.

Bacteria possess multiple pili that can emerge homogeneously from
the surface of the cells, for example in Neisseria gonorrhoeae [23, 24]
and Neisseria meningitidis [25], or can be locally concentrated, for ex-
ample at the poles of the rod-shaped Pseudomonas aeruginosa [26].
While the pili dynamically change their length, their mean length
can be estimated to be around 1− 2 µm [27], thus being comparable
to the size of the bacteria [28] (see figure 1.2a and 1.2b). Filaments of
up to 10− 20 µm length were also observed experimentally [24, 28].
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Figure 1.2: Surface-motility mediated by type IV pili. (a,b) Electron mi-
croscope images of Neisseria gonorrhoeae. The filaments emerging
from the surface of the cells are the type IV pili. Image (a) was
contributed by Nicolas Biais (Brooklyn College, New York City),
image (b) was taken from [29]. (c) Sketch of pili-mediated mo-
tility of bacteria. Initially, a pilus is free and protruding. After
attachment, the pilus starts to retract and pulls the cell body by
a mechanism reminiscent of a grappling hook, causing a displa-
cement.

Individual pili are made of subunits, called pilE. These subunits
have an effective size of 0.6− 0.8 nm. Thus, an individual pilus ha-
ving a length in the order of a few microns, consists of thousands of
monomers. The resulting filament has the structure of an α-helix [29]
with a diameter of around 8.5 nm [30]. It is semiflexible with a per-
sistence length around 5 µm [31]. Subunits not incorporated into the
pili are stored in the inner membrane of the cells. They form filaments
with the help of a complex molecular machinery, including the ATPa-
ses pilF and pilB. The assembled pili are able to extend from the cell
membrane through channels, called pilQ, allowing them to bridge
the outer membrane (see figure 1.3a). The molecular motor pilT is
responsible for the disassembly of the pilus by generating forces of
up to 100− 180 pN [32–34] (see figure 1.3b). The pilus subunits rele-
ased after disassembly are recycled into the inner membrane [35]. A
detailed description of the molecular details of the pilus machinery
is given in [35].

Pili extend and retract from the surface of the cells with velocities of
around 1− 2 µm/s [23]. The retraction velocity can be altered by oxy-
gen depletion [36] and is regulated by pilT paralogues, in particular
pilT2 and pilU. For example, in a pilT2 deletion mutant it was obser-
ved that the pilus retraction velocity is reduced considerably [37].

From optical tweezer experiments with pili attaching to trapped
silica beads, it was shown that retraction of the pili enables the cell
to create drag forces of up to 100− 200 pN [32], making pilT to one
of the strongest molecular motor known in nature. For comparison,
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Figure 1.3: Simplified sketch of the type IV pilus machinery. The sketch was
adapted from [23, 35]. (a) Assembly of pili. The pilus subunits,
called pilE, are moving along the inner membrane (IM) of the
bacterium and are assembled by the assembly apparatus. The re-
sulting filament is able to penetrate through the outer membrane
(OM) by a channel, called pilQ. (b) Retraction of pili. Due to the
molecular motor pilT, the pilus is disassembled, mediating its re-
traction. Most likely, the subunits are redistributed in the inner
membrane.

the forces generated by kinesin and dynein, motors associated with
intracellular transport along microtubules, possess characteristic stall
forces of less than 6 pN [38]. The cooperative pulling of multiple pili
enables the cell to generate forces in the range of nanonewtons [33].

Pili can bind to a substrate. While this binding can be correlated
with key residues of the pilus subunits that are involved in adhesion
and are only exposed at the tip [39–41], it has also been suggested that
pili can possess multiple binding sites along the filament [42, 43]. Pili
attached to different substrates exhibit slip-bond behavior, a process
where their detachment rate increases with increasing pulling force
[34].

The interactions of multiple pili and their cycles of extension, atta-
chment and retraction cause the motion of cells over a substrate, also
called ”twitching motility” [22]. It is a jerky motion during which cells
switch between phases of motion and pauses. This behavior results
from collective interactions of multiple pili of a cell [28].

While type IV pili are often involved in the motility of bacteria,
they are also frequently used for DNA uptake and exchange [44] and
generating attractive cell-cell-interactions, leading to the formation of
microcolonies (see subsection 1.3.1).

For completeness, we want to discuss another type of surface mo-
tility of bacteria, the so called ”gliding motility”, a process which is
still poorly understood. Cells that glide, including Salmonella enterica,
Myxococcus xanthus [45] and Bacillus subtilis [46], exhibit motion over
a substrate that is reminiscent of the swarming motility and often in-
volves multiple bacteria. While for some of the bacteria type IV pili
seem to mediate the gliding motility, it appears that more than one
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mechanism can cause the motility. Many bacteria perform sliding mo-
tility without any appendages (like flagella or pili) involved [45].

1.2 random walks and characterization of bacterial

motility

In the first part of this section, we introduce Brownian motion and
show how the Langevin equation can be used to study it. The discus-
sion of the Langevin equation allows us to introduce two important
quantities, the velocity autocorrelation and the mean squared displa-
cement, both of which are frequently used to characterize the proper-
ties of random walks.

In the second part of this section, we formulate and study the mas-
ter master equation of a simple one-dimensional random walk. Mas-
ter equations are an important tool for the description of the time
evolution of stochastic processes and has been used on multiple occa-
sions within this thesis (see section 3.1 and section 6.2).

In the last part of this section, we give a brief introduction to the
motility of bacteria, driven by active processes.

1.2.1 Brownian motion and the Langevin equation

In 1828, Robert Brown observed the random motion of pollen grains
suspended in water [47]. Only 80 years later, Albert Einstein [48] and
Marian Smoluchowski [49] could identify collisions of the pollen with
atoms and molecules within the fluid as origin of the random mo-
tion. The motion of Brownian particles can be studied by a stochastic
differential equation, namely the Langevin equation. The following
calculations were taken from [50]. Here, we only present the one-
dimensional version of the Langevin equation, higher dimensional
forms of this equations can be found in the literature [50, 51].

The Langevin equation describes the force balance of the Brownian
particle:

v̇ = −µv+ Γ(t), (1.1)

with the velocity v of the particle, the friction µ and the Langevin
force Γ(t). Here, the mass m of the particle is included in v, µ and Γ .
The stochastic force obeys

〈Γ(t)〉 = 0 (1.2)

〈Γ(t)Γ(t ′)〉 = Γ0δ(t− t ′) (1.3)

and is also called white noise-force. In this equation, Γ0 denotes the
strength of the noise and δ(x) is the Dirac delta function.

From the Langevin equation, one can compute the particle velocity,
given by

v(t) = exp (−µt)

[
v0 +

∫t
0

dt ′ exp
(
µt ′
)
Γ(t ′)

]
, (1.4)
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with the initial velocity v0. The velocity autocorrelation is then given
by

〈v(t1)v(t2)〉 = v20 exp [−µ(t1 + t2)]

+
Γ0
2µ

(exp [−µ|t1 − t2|] − exp [−µ(t1 + t2)]) . (1.5)

For µt1 � 1 and µt2 � 1 this equation takes a simpler form

〈v(t1)v(t2)〉 =
Γ0
2µ

exp [−µ|t1 − t2|] . (1.6)

In the stationary state we get

〈v(t)2〉 = Γ0
2µ

. (1.7)

By assuming thermodynamic equilibrium we can use the equiparti-
tion theorem and determine the strength of the noise, Γ0, by

1

2
kT =

1

2
m〈v(t)2〉 = Γ0m

4µ
, (1.8)

where k is the Boltzmann constant, T is the temperature and m is the
mass of the Brownian particle. Then we have

Γ0 =
2µkT

m
. (1.9)

When we track the trajectory x(t) of an particle, we can define its
velocity by

v(t) = ẋ(t) = lim
∆t→0

x(t+∆t) − x(t)

∆t
. (1.10)

For the analysis of experimental data, we cannot reach the limit ∆t = 0,
but need to pick a finite ∆t. This makes the value of the velocity de-
pendent on the value of ∆t and thus it is often difficult to estimate the
velocity autocorrelation experimentally. We can define another quan-
tity which only depends on the position of the particle and thus, is
independent of the value of ∆t, the so called mean squared displace-
ment:

〈(x(t) − x(0))2〉 =
∫t
0

dt1
∫t
0

dt2 〈v(t1)v(t2)〉. (1.11)

The mean squared displacement of a Brownian particle is then given
by

〈(x(t) − x(0))2〉 =
(
v20 −

Γ0
2µ

)
(1− exp [−µt])2

µ2

+
Γ0
µ2
t−

Γ0
µ3

(1− exp [−µt]) . (1.12)

For very large values of the time, µt� 1, this equation simplifies to

〈(x(t) − x(0))2〉 ' 2Dt. (1.13)

Here, we define the diffusion coefficient

D =
Γ0
2µ2

=
kT

mµ
, (1.14)

giving an equation that is called the Stokes-Einstein relation. Note
that the particle mass m is incorporated in the friction µ and thus,
the diffusion coefficient is not dependent on the mass.
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Figure 1.4: One-dimensional random walk. (a) Trajectory of a one-
dimensional random walk with constant step length of 1, con-
stant time steps of 1 and p = q = 0.5. (b) Discrete probabilities
P(x, t) (bars) for a one-dimensional random walk, as given by
equation 1.17, at time t = 50. The continuous limit of the proba-
bility distribution, given by equation 1.18, is shown by the red
line.

1.2.2 Master equation of a simple random walk

We study how a particle moves randomly on a one-dimensional lat-
tice and how this can be described by a Master equation [52].

The probability of the particle to be at a point x at time t is given by
P(x, t). For now, we assume that x and t can only take integer values,
x ∈ Z and t ∈N. The particle jumps at each time step, chosen to
be constant, with a probability p to the right and with a probability
q = 1− p to the left. Such a random walk is shown in figure 1.4a. The
evolution of the system is then given by

P(x, t) = pP(x− 1, t− 1) + qP(x+ 1, t− 1). (1.15)

Additionally, we can write down the rate of change of the probability
P(x, t), given by

P(x, t) − P(x, t− 1) = pP(x− 1, t− 1) + qP(x+ 1, t− 1)

− (p+ q)P(x, t− 1). (1.16)

The solution of these equations is the binomial distribution,

P(x, t) =
t!

2
(
t+x
2

)
!
(
t−x
2

)
!
p
t+x
2 q

t−x
2 (1.17)

and for large t it can be approximated by

P(x, t) ' 1√
2πt

exp
[
−
(x− t(p− q))2

2t

]
, (1.18)

which is a Gaussian distribution. The form of these distributions is
shown in figure 1.4b.
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In the continuum limit, where we consider the infinitesimal step
length ∆x and time ∆t, the master equation has the form

P(x, t) = pP(x−∆x, t−∆t) + qP(x+∆x, t−∆t). (1.19)

By making a Taylor expansions of P(x, t) for ∆t and ∆x we get

P(x, t) ≈ (p+ q)

(
P(x, t) −

∂P

∂t
∆t

)
− (p− q)

∂P

∂x
∆t

+
p+ q

2

∂2P

∂x2
∆x2. (1.20)

By considering the fact that p+ q = 1 and setting

V = lim
∆t,∆x→0

(p− q)
∆x

∆t
, (1.21)

D = lim
∆t,∆x→0

1

2

∆x2

∆t
(1.22)

we get

∂P

∂t
= −V

∂P

∂x
+D

∂2P

∂x2
. (1.23)

Here, V is the constant drift and D is the diffusion coefficient. This
equation is a special form of the Fokker-Planck equation with con-
stant D and V and is also known as Smoluchowski equation. For
p = 0.5 the drift vanishes, V = 0, and with the initial condition

P(x, 0) = δ(x) (1.24)

(with the Dirac delta function δ(x)), the resulting probability density
function of the one-dimensional random walk is given by

P(x, t) =
1√
4πDt

exp
(
−
x2

4Dt

)
. (1.25)

By computing the second moment of this distribution,

〈x(t)2〉 = 2Dt, (1.26)

we get the same expression as computed from the Langevin equation
for the mean squared displacement (see equation 1.13).

1.2.3 Bacterial motility as an active process

As it was discussed in section 1.1, the motility of bacteria can ori-
ginate from many mechanisms. Up to now, we assumed that the
random motion of the Brownian particle was due to thermal noise,
assuming thermodynamic equilibrium.

In reality, the motility of living organisms, in particular moving
bacteria, is characterized by an active self-propulsion [7, 53].

Cells are called ”active” when energy is taken in and dissipated and
due to this processes, the cell executes motion [53]. An example of
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Figure 1.5: Microcolonies of Neisseria gonorrhoeae. Electron microscope ima-
ges of Neisseria gonorrhoeae microcolonies. (a) A microcolony gro-
wing on a glass surface. The image was contributed by Nicolas
Biais (Brooklyn College, New York City). (b) Microcolony gro-
wing on top of epithelial cells. Due to the retraction of attached
pili, the microvilli of the epithelial cells, located beneath the mi-
crocolonies, are stretched and elongated. The figure was adapted
from [54].

such a process is the retraction of a pilus, mediated by the molecular
motor pilT [23].

Many aspects of the random motion of active particles can be un-
derstood within the framework of the Langevin equation introduced
above. In the case of active systems, the noise strength is different
from equation 1.9 and is affected by active processes driving the sy-
stem out of thermodynamic equilibrium.

To characterize the random motion of active particles, we can often
take the passive models, described in the previous chapters, and re-
place the origin of the noise Γ , for example by different intercellular
processes or hydrodynamic interactions [7].

1.3 bacterial microcolonies and their formation

After showing how pili mediate the motion of single cells and how
we can study the motility of bacteria, we will now consider bacterial
microcolonies, aggregates consisting of several bacteria. In the first
part of this section, we introduce microcolonies and their formation,
mediated by type IV pili. Such microcolonies are the first step in the
formation of early biofilms, surface-associated communities of bacte-
ria. In the second part of this section, we introduce the model orga-
nism of this thesis, the pathogenic bacterium Neisseria gonorrhoeae.

1.3.1 Pili-mediated formation of microcolonies

Besides the motility of individual cells on top of a substrate (see
section 1.1), pili can also mediate the formation of microcolonies,
bacterial aggregates consisting of up to thousands of cells [55, 56].
For many bacteria, this is one of the main mechanisms to form ag-
gregates [29]. The formation of these microcolonies is driven by pili-
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mediated attractive cell-cell-interactions, originating from the binding
of two or more retracting pili [29, 54, 57].

For pili-pili-bundling it has been suggested that the strength of
interactions is dependent on the geometry of the pili, in particular
whether two pili are parallel or antiparallel. Pili protruding from a
single cell are in general parallel to each other. Interactions of the
pili of these cell would reduce the available pili surface area that can
be used for bonds to pili of other cells, without offering any direct
benefit. On the other side, pili of different cells are likely to be antipa-
rallel to each other and in this case it would be preferential to form
pili-pili-bonds [29]. Although this idea appears plausible, no direct
experimental proof for type IV pili is available up to this date. For
F-actin filaments it was shown in a recent study that interfilament
sliding friction differs for parallel and antiparallel sliding [58].

In figure 1.5, microcolonies of Neisseria gonorrhoeae are shown, which
formed due to pili-pili-interactions of the individual cells. The colo-
nies themself also possess free pili at their surface that are elongating
to the surrounding fluid and can attach to a substrate (for example
epithelial cells), enabling the colony to perform motility over the sub-
strate [59, 60]. Because of this, colonies are able to move, collide and
coalesce with other colonies, thus introducing an important mecha-
nism of colony growth (see chapter 3 and chapter 6).

Cells benefit from the formation of microcolonies by protecting the
cells within the aggregates from external chemical and mechanical
threats. Additionally, microcolonies possess more pili adjacent to the
substrate, thus increasing the strength of the interactions with the sur-
face and the force the colony is exerting on the surface (for example
epithelial cells). These forces can be in the order of nanonewton for a
single pili bundle [33], allowing the cells to mediate dramatic changes
to the cytoskeleton. These changes can be beneficial for the infection
of pathogenic bacteria, for example Neisseria gonorrhoeae [54].

The bacterial microcolonies formed by pili-pili-interactions repre-
sent the first step of the formation of biofilms.

1.3.2 Microcolonies as precursors of biofilms

While one usually imagines bacteria as individual entities, in fact
most bacteria organize in biofilms, surface-associated communities
of bacterial cells on a substrate, embedded in an exopolysaccharide
matrix [61].

The life cycle of a biofilm, here presented for Myxococcus xanthus
bacteria and depicted in figure 1.6, can be divided into five stages [55,
61, 63]:

1. Planktonic state: In the first phase, individual cells are freely
moving, being independent of each other. Cells possessing fla-
gella (for example Escherichia coli or Myxococcus xanthus) are
swimming during this phase, cells having pili only (for exam-
ple Neisseria gonorrhoeae or Neisseria meningitidis) are moving on
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Figure 1.6: Life cycle of a biofilm, taken from [61]. Initially, cells need to find
a surface on which they can form the biofilm. This phase is called
the planktonic state, where individual cells swim through a fluid.
It is followed by the attachment phase, where cells adhere with
the help of pili to the surface. This phase can be divided into ”re-
versible” and ”irreversible” [62], characterized by how strong the
bond with the surface is. The attached cells will form microcolo-
nies due to different growth mechanisms like proliferation and
coalescence of colonies. During this step, the pili-mediated sur-
face motility plays an important role. The microcolonies create an
exopolysaccharide matrix that also includes dead cells and extra-
cellular DNA, representing the fourth state, the macrocolony. In
this state, the colony can take different shapes. In the last step,
such macrocolonies dissolve by resetting at least a fraction of
cells to the planktonic state, which allows the bacteria to invade
the environment.
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a substrate. The motion continues until the bacteria come close
to the substrate.

2. Attachment state: When cells are close to a substrate, they can
adhere, for example by using type IV pili. The adhesion can
often be differentiated into ”reversible” and ”irreversible” [61,
62]. They differ in the strength of the binding such that, for
the ”reversible” state, it is considerably weaker. Often, cells are
initially in a ”reversible” state, followed by the transition to the
”irreversible” state.

3. Microcolony formation: Due to different growth mechanisms
(like cell divisions and coalescence of smaller cell aggregates
and cells moving on the substrate) microcolonies consisting of
a high number of cells can form. These microcolonies continue
their growth until they start forming macrocolonies.

4. Macrocolony formation: Macrocolonies often have a mushroom-
like shape that originates from pili-mediated interactions of the
cells [64]. The cells are separated by fluid-filled void regions,
that can take different complex shapes. Additionally, cells within
macrocolonies produce an exopolysaccharide matrix, that also
includes dead cell debris and extracellular DNA.

5. Dispersal state: Macrocolonies are able to dissolve, releasing sin-
gle cells into the surrounding fluid and bringing them back to
the planktonic state, allowing them to disperse after local re-
sources of nutrients have been depleted.

From this overview of the biofilm life cycle it becomes clear that
the formation of biofilms is an expensive process that involves the
production of a high amount of molecules that will later form the
exopolysaccharide matrix. This cost is outweighed by the advantages
a biofilm offers to the individual cells.

Cells within biofilms are better protected from antibiotics than cells
in the planktonic state, making them up to 1000 times more resistant
to those antimicrobial drugs [65, 66]. Biofilms also enable the cells to
withstand strong shear forces [67, 68]. Additionally, biofilms are able
to protect individual cells from UV radiation [69] and predators, in
particular from unicellular eukaryotic organisms called protozoa [70].
The formation of such biofilms is often triggered by environmental
limitations, such as a lack of nutrients [61, 71].

Interestingly, biofilms are not only formed by a single species, but
often form polymicrobial aggregates, consisting of more than one
bacteria species [72–74].

Additionally, biofilms can contain cells with different fates, such
that initially identical cells follow different developmental pathways.
Depending on where a cell is positioned within a biofilms, it adopts
different properties. The cells can exhibit differences in motility, pro-
duction of the exopolysaccharide matrix or mechanical properties,
mediating the formation of the mushroom-shape of the biofilm du-
ring the macrocolony state [75].
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In order to organize such complex differentiation within biofilms,
individual cells must be able to communicate with each other. The
differentiation can be triggered by quorum sensing, intercellular sig-
naling that is driven by the secretion and recognition of different mo-
lecules [76]. Additionally, it was recently suggested that mechanical
cues may also affect the differentiation of cells within microcolonies
and biofilms [77].

Finally, it is interesting to point out that strong similarities exist
between differentiation patterns of bacteria within biofilms and the
development of multicellular organisms [5], for example during em-
bryogenesis.

1.4 neisseria gonorrhoeae as model organism to study bacte-
rial colony formation

In this thesis, we investigate how pili mediate the formation of bacte-
rial microcolonies and the motility of cells and microcolonies on a
substrate. The model organism of our choice is the bacterium Neisse-
ria gonorrhoeae. Due to the fact that these bacteria only possess type
IV pili and no other tools to cause cell motility and attractive cell-cell-
interactions, it is an ideal organism to study exactly those processes.

The individual bacteria have a dumbbell-shape, which is called a
diplococcus [29] (see figure 1.2), and possess around 5-20 pili protru-
ding from the cell membrane [28, 29, 34]. The microcolonies formed
by Neisseria gonorrhoeae can consist of up to thousands of cells, rea-
ching diameters in the order of 20− 30 µm (see figure 1.5).

The bacterium Neisseria gonorrhoeae is the causative agent of the
sexually transmitted disease gonorrhea. With 80 million reported new
infections worldwide every year, gonorrhea is one of the most com-
mon sexually transmitted diseases worldwide, causing around 700

reported deaths in 2015 [78, 79]. While the number of reported de-
aths is, compared to other bacterial diseases, low, it could increase
considerably in the future due to the alarming development of antibi-
otic resistance by Neisseria gonorrhoeae.

Antibiotic treatment of the disease gonorrhea reaches back as far
as 1897, where Arthur Eichengrün successfully used colloidal silver,
called Protargol, as treatment [80]. In recent years, treatment of the
disease gonorrhea has been compromised by an alarming rise of re-
sistance to antibiotics. This goes up to the point where only the an-
tibiotic Ceftriaxone is able to guarantee a successful treatment [81–
84], although first cases of resistances were reported even for Ceftri-
axone [85–87].

It is important to highlight that the bacteria are only able to infect
human cells, prohibiting to study Neisseria gonorrhoeae with the help
of animal models. In order to induce the infection, pili of Neisseria go-
norrhoeae bind specifically to the human transmembrane glycoprotein
CD46 [88]. The epithelial cells associated with the single bacteria and
bacterial microcolonies exhibit a higher concentration and elongation
of microvilli, membrane protrusion that are involved in adhesion of
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eukaryotic cells (see figure 1.5b) [54]. Additionally, pilus attachment
and retraction mediates the formation of cortical plaques, cytoskeletal
domains with an increased concentration of actin [89]. Due to these
dramatic changes of the mechanics of the epithelial cells and their
cytoskeleton, cell apoptosis is triggered, which is an important step
during the infection process [29, 54].

While we focus on the dynamics of Neisseria gonorrhoeae in this the-
sis, our results can be applied to other pathogenic and highly dange-
rous bacteria possessing type IV pili, for example Neisseria meningiti-
dis and Pseudomonas aeruginosa.

1.5 objectives and structure of this work

In this thesis we want to study how forces, specifically those mediated
by type IV pili, can mediate the dynamics of bacteria and bacterial ag-
gregates. The model organism of our choice is the bacterium Neisseria
gonorrhoeae.

In order to highlight the importance of pili during the life of these
bacteria, we start by looking at multiple single cells on top of a sub-
strate. Due to their pili, these cells move over the substrate, a process
which is studied in chapter 3. While the cells move, they will start
to come close to each other and interact due to the binding of pili
to each other. This will mediate the formation of microcolonies (see
chapter 4 and chapter 6).

The colonies are then also able to move over the substrate (see chap-
ter 3). In this thesis, we study how single cells and colonies move over
on a substrate and how different models can be applied to explain ex-
perimental observations.

How individual cells behave within a colony and how this beha-
vior affects processes like the coalescence of two colonies is studied
in chapter 4. Here, we compare bacterial microcolonies to liquid drop-
lets. Additionally, we study how wild type cells and different types of
mutated cells mix and demix within microcolonies and connect our
observations to the differential adhesion hypothesis (see chapter 5).

The three main processes affecting the formation and growth of
these colonies are the pickup of single cells due to larger microcolo-
nies, the coalescence of two colonies in order to form a larger colony
and the proliferation of the bacteria. The time-dependent distribution
of colony sizes is studied in chapter 6 and compared to experimental
results.

To study the dynamics of cells and microcolonies, we developed
a computational model, allowing us to investigate the role of indivi-
dual pili interactions during all processes previously mentioned (see
chapter 2).

In this thesis, we employ experimental, theoretical and numerical
approaches to study how pili lead to bacterial behavior on multiple
scales: from individual cells, over single colonies and up to multiple
colonies.
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2
C O M P U TAT I O N A L M O D E L O F B A C T E R I A L
M O T I L I T Y A N D M E C H A N I C S

In order to study how pili mediate the dynamics of single bacteria
and microcolonies, we developed a computational model of indivi-
dual cells in which the direct cell-cell-interactions are modeled by
explicitly simulating the dynamics of pili and computing the forces
mediated by them. This allows us to study quantities that are not (yet)
accessible by experiments, for example the properties of the pili and
the forces acting on cells within a colony.

The main features of the computational model are described in this
chapter, more details can be found in appendix A. The presented mo-
del was published in [60]. It allows us to investigate the motion of
single cells on a substrate (see chapter 3), the internal dynamics of
microcolonies and how they affect the coalescence of microcolonies
(see chapter 4) and the self-assembly of mixtures of different cell po-
pulations (see chapter 5).

While the model was developed to study the behavior of Neisseria
gonorrhoeae, it can easily be adapted to investigate the dynamics of a
wide range of bacteria possessing type IV pili by changing the used
parameters (for Neisseria meningitidis) or by changing the geometry of
the cells (for Pseudomonas aeruginosa or Neisseria elongata).

2.1 geometry of the cells and free pili dynamics

The cells of Neisseria gonorrhoeae possess a dumbbell shape, also cal-
led a diplococcus [29]. In our model, the in silico cell consists of two
spheres, the so called cocci, that each have a radius R. The positions
of the cocci a and b of one cell i are given by r(a)

i and r(b)
i , such

that |r(a)
i − r(b)

i | = dcocci < 2R. They thus have a fixed distance (see fi-
gure 2.1a). The center of the cell is then given by

r(com)
i =

r(a)
i + r(b)

i

2
. (2.1)

A cell possesses around 5-20 pili [27, 28, 34] that are randomly crea-
ted by the cell with a rate γprod and homogeneously distributed on
the surface of the cell [28]. It has been suggested that that the num-
ber of pili is limited by the number of domains responsible for pili
creation [35]. Thus, we introduce a maximal number of pili Nmax that
limits the amount of pili a cell possesses.

Pili are modeled as springs. They have the shape of a line, with
their position being characterized by two points: their start point at
the surface of the cell (also called anchor point) and their end point
(see figure 2.1a). The distance between these two points is named
the contour length of the pilus. It has been suggested by experiments

15
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16 computational model of bacterial motility and mechanics

Figure 2.1: Schematic representation of the geometry of the simulations and
how pili interact with the substrate and other pili. Figure adap-
ted from [60]. (a) A dumbbell shaped cell i with cocci positions
r(a)
i and r(b)

i with one pilus. The position of the pilus k is charac-
terized by its start point, which is the anchor point connecting
the pilus and the cell, and its end point. (b) Pili can bind to a
substrate with their tip or can bind to other pili. The binding of
two pili is chosen from the intersection of the beam region of one
pilus, resulting from its thermal fluctuations, and the line shape
of the second pilus. (c) Three-dimensional representation of the
geometry and the pili dynamics in the computational model.

that the pili lengths are exponentially distributed with a characteristic
length of lc = 1− 2 µm [27, 28].

The persistence length of type IV pili was initially measured by
Skerker et al. in 2001 [31] to have a value of 5 µm by observing the
thermal fluctuations of fluorescently labeled pili associated with a
substrate. Contrary to this result, in 2015 Lu et al. [90] used AFM
pulling experiments to estimate the value of the persistence length to
be around 1 nm, thus being three orders of magnitude lower than
the earlier measured value. A recent theoretical analysis [91] of the
effects of pili persistence length lpers on the motility of cells suggests
that the persistence length is in the order of microns, thus confirming
the results of Skerker et al. Here, we use their value and assume that
pili are semiflexible polymers.

In our model, a pilus protrudes perpendicularly from the surface
of the cell with a velocity vpro. When a pilus hits the substrate, it will
slide along the substrate with its tip. The protrusion of a pilus con-
tinues until it switches stochastically to a retraction state. The rate
γret after which this switching takes place is governed by the charac-
teristic length lc of the pili, so that γret = vpro/lc. After switching to
a retraction mode, a pilus is no longer able to switch back to a pro-
trusion state. Here, we assume that the velocity of protrusion and the
velocity of retraction have the same value

vpro = vret = v0, (2.2)

as has been suggested experimentally [23]. A pilus is removed if the
contour length has shrunk to zero due to its retraction. More details
about the geometry and the pili dynamics can be found in appen-
dix A.1.
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2.2 binding of pili to a substrate and to other pili 17

2.2 binding of pili to a substrate and to other pili

Pili are able to bind stochastically to the substrate with their tip and
to other pili along their full length (see figure 2.1b). Information of
how these processes are implemented are given in the following sub-
sections.

After attachment, pili start to retract immediately in our model,
as has been suggested experimentally [35]. Pili that are attached are
not allowed to bind to the substrate or other pili, thus only binary
interactions are permitted.

2.2.1 Pili substrate binding

The exact mechanism of how type IV pili bind to substrates is not
known. For the pili of Pseudomonas aeruginosa it has been suggested
that pili possess key residues of the pilin subunits that are involved
in adhesion and are only exposed at the tip [39–41]. Within the poly-
mer, they are involved in the interactions of the subunits. For other
proteins associated with pili it was suggested that they are not only
located at the tip of the pili, but can also be rarely found along the
filament, so that a pilus may possess multiple binding sites [42, 43].

In our model, we assume that the tip of a pilus binds to the sub-
strate with an attachment rate γatt,ps if the tip is directly on top of the
substrate. In particular, the z−component of the end point r(e)

k of the
pilus needs to be 0 (see figure 2.1b).

2.2.2 Pili-pili binding

Pili mediate attractive interactions between cells by binding to pili of
other cells [25, 92, 93]. The experimental observation that cells wit-
hout pili are not incorporated into bacterial microcolonies [57] sugge-
sts that pili are not able to bind to the surface of bacteria.

In our model, pili are characterized as lines with an start points r(s)
k

and end points r(e)
k . In order to describe the binding of two pili, we

consider the thermal fluctuations of pili that swipe through a cone-
like region in space (see figure 2.1b and 2.1c). The cone-like shape
of this region is governed by the beam equation [94], more details
are given in chapter A.2. If a pilus, having the shape of a line, and
a second pilus having the shape of such a cone, intersect, they can
bind stochastically with the rate γatt,pp at a random point of the line
segment within the beam volume.

2.3 forces and motility

We consider two classes of forces that are acting on the cells: excluded
volume forces and pili-mediated forces.
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18 computational model of bacterial motility and mechanics

Figure 2.2: Sketch of the different forces that are acting on cells within the
model and mediate the cell motion. The figure was taken from
[60]. (a) Excluded volume forces F(cs)

j of a cell overlapping with a

substrate and the distance vector d(cs)
j , pointing from the center

of the cell pointing towards the point where the force is acting.
(b) Excluded volume forces F(cc)

ij of a cell overlapping with a
substrate with the overlap length ∆dov and the distance vector
rij, pointing from the center of the cell towards the center of the

cocci of cell i and j. (c) Pili-mediated forces F(ps)
k due to binding

to the substrate. The vector d(ps)
k points from the center of the cell

to the start point of the pilus. (d) Pili-mediated forces F(pp)
k due

to binding of two pili. The vector d(pp)
k points from the center of

the cell to the start point of the pilus k.
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2.3 forces and motility 19

2.3.1 Excluded volume forces

If a cell overlaps with a substrate, located at position z = 0 (see fi-
gure 2.2a), a repulsive force F(cs)

j will act from the substrate on coccus
j = a,b, described by a simple Hookean spring with spring constant
kcs in the normal direction.

Additionally, the overlap of two cells, called i and j, results in a
repulsive force F(cc)

ij (see figure 2.2b). Again, this is described as a
harmonic force with a different spring constant kcc.

2.3.2 Pili and pili-mediated forces

Pili are modeled as springs with spring constant kpili. If a pilus k
is attached to the substrate or another pilus, it will start to retract
and, due to the resulting stretching of the spring, generate a force
F(ps)
k or F(pp)

k . These forces are proportional to the difference between
the contour length l(cont)

k of the attached pilus and the length of the
pilus if it be not attached, called the free length l(free)

k . If a pilus is
not stretched but compressed, it is not able to generate any force
between cells or to the substrate. While the contour length of the pili
is a function of the position of the cells and their pili, the free length
is affected by the retraction of the pili. The retraction velocity v(ret)

k of
pilus k is affected by the pulling force F and exhibits stalling behavior,

v
(ret)
k = max

[
0, vret

(
1−

F

Fstall

)]
, (2.3)

with the stalling force Fstall [23, 95]. Here, F is the absolute value of
F(pp)
k or F(ps)

k .
Additionally, the pilus detachment rate (γ(sub)

det for pilus-substrate
bonds and γ(pili)

det for pilus-pilus bonds) is affected by the pulling force:

γ
(sub)
det =

1

td,ps
exp

(
F

Fd,ps

)
, (2.4)

γ
(pili)
det =

1

td,pp
exp

(
F

Fd,pp

)
, (2.5)

where we define the pili detachment times td,pp and td,ps and the
pilus detachment forces Fd,pp and Fd,ps. The form of these equations is
motivated by Kramer [96] and Bell et al. [97]. From experiments [34],
it was also proposed that the detachment rate follows

γ
(sub)
det =

1

t
(1)
d,ps exp

(
− F

F
(1)
d,ps

)
+ t

(2)
d,ps exp

(
− F

F
(2)
d,ps

) . (2.6)

with the detachment forces F(1)
d,ps = 1.28 pN and F(2)

d,ps = 33.8 pN and

the detachment times t(1)
d,ps = 0.85 s and t(2)

d,ps = 0.04 s on a BSA-coated
glass surface.
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Further information concerning the pili-mediated forces are given
in appendix A.3.

2.3.3 Cell motility

The total force acting on a cell i is then given by

F(tot)
i =

∑
cocci j

F(cs)
j +

∑
cells j

F(cc)
ij +

∑
pili k

F(ps)
k +

∑
pili k

F(pp)
k (2.7)

Additionally, the torque acting on cell i is given by

T(tot)
i =

∑
cocci j

d(cs)
j × F(cs)

j +
∑

cells j

d(cc)
ij × F(cc)

ij

+
∑

pili k

d(ps)
k × F(ps)

k +
∑

pili k

d(pp)
k × F(pp)

k . (2.8)

Here, d(cs)
j , d(cc)

ij , d(ps)
k and d(pp)

k are the distance vectors pointing

from the center of the cell r(com)
i to the points at which the forces are

acting (see figure 2.2).
We assume that the velocity of the cell i is related to the force in the

overdamped limit [98], thus its center and the positions of the cocci
follow

dr(com)
i

dt
=

dr(a)
i

dt
=

dr(b)
i

dt
= µtransF

(tot)
i , (2.9)

where µtrans is the translational mobility of the cells. Additionally, the
cell and its cocci rotate due to the torque, where the angular velocity
vector is given by

w(tot)
i = µrotatT

(tot)
i , (2.10)

where µrotat is the rotational mobility of the cell.

2.4 simulation details

The simulations were performed on the local computing cluster of
the MPI-PKS, consisting of x86-64 GNU/Linux systems. All machines
possess Intel Xeon processors with a clock rate of 2.2 to 3.0 GHz
and have between 2 to 4 CPUs. The code was written in C++ and
parallelized on CPU by using the library OpenMP. We used the GCC-
compiler (version 4.8.1) and were running the simulations on up to 8

cores in parallel.
We used an Euler algorithm to solve the equations of motion with

a time step ∆t = 5× 10−6 s or smaller. Higher order schemes offer
comparable results, but they do not increase the computation speed.

While most parameters within our model are known from experi-
ments (see table 2.1), many parameters play only a minor role within
our simulation, e.g.the excluded volume constants kcc and kcs which
are in general large [99] (compared to the forces mediated by pili)
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2.4 simulation details 21

and do not affect the simulations as long as they are large enough to
not allow overlapping of cells with each other and the substrate (see
appendix F.3.1).

If not stated otherwise, the translational and rotational mobility
µtrans and µrotat were chosen such that the viscosity is 10× larger than
the viscosity of water. This modification is useful because it allows
to increase the time step ∆t of the simulation. The used mobilities
correspond to a force of 2 pN to move a single cell with the maxi-
mal pilus retraction velocity vret. This force is considerably smaller
than the characteristic pilus pulling force Fstall, and also much smal-
ler than the detachment forces we used in most parts of this thesis.
Thus, we do not expect a qualitative difference in the outcome of the
simulations.

For the remaining parameters of the simulation (see table 2.1), in
particular the detachment forces (Fd,ps and Fd,pp), the detachment ti-
mes (td,ps and td,pp) and the binding rates (γatt,ps and γatt,pp), we sam-
pled over different values. The values over which we sampled are
given in appendix F.
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parameter value ref .

Cocci radius R 0.5 µm [28]

Cocci distance dcocci 0.6 µm [28]

Cell-cell excl. vol. const. kcc 2× 104 pN µm−1

Cell-sub. excl. vol. const. kcs 4× 104 pN µm−1

Translational mobility µtrans 1 µm (s pN)−1

Rotational mobility µrotat 2 (µm s pN)−1

Pilus persistence length lpers 5 µm [31]

Pili production rate γprod 15 Hz [34]

Maximal pili number Nmax 15 [35]

Pili protrusion velocity vpro 2 µm/s [23, 28]

Pili retraction velocity vret 2 µm/s [23, 28]

Mean pili length lc 1.5 µm [28]

Pili spring constant kpili 2000 pN/µm [100, 101]

Pili stalling force Fstall 180 pN [23, 34]

Pili-pili detachment force Fd,pp

Pili-sub. detachment force Fd,ps

Pili-pili detachment time td,pp

Pili-sub. detachment time td,ps

Pili-pili binding rate γatt,pp

Pili-sub. binding rate γatt,ps

Table 2.1: Parameters of the computational model. The upper half shows
parameters that could either be estimated from experiments or
did not affect the outcome of the simulations as long as they were
chosen high enough. The lower half shows parameters that were
sampled (see appendix F).
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M O T I L I T Y O F S I N G L E B A C T E R I A O N A
S U B S T R AT E

Many bacterial cells and microcolonies use type IV pili to attach to
different substrates, for example epithelial cells [15] or glass and plas-
tic surfaces [28, 34, 59]. By retracting attached pili, the cells create
pulling forces and using these forces, they mediate their motility on
the substrate.

Experimentally, it was shown that Neisseria gonorrhoeae bacteria mo-
ving on a BSA-coated glass substrate exhibit a persistent random mo-
tion. The characteristic length of the motion is higher than the average
length of the pili [27]. Previously, it was suggested that this behavior
cannot be solely explained by a tug-of-war mechanism, known to ex-
ist for the bidirectional transport by molecular motors [38]. Instead,
it was suggested that one needs to consider directional memory in
the form of bundling of multiple pili and correlations between the
originating points of pili [34]. Here, we use our computational mo-
del (see chapter 2) to study whether we can reproduce the persistent
motion over lengths higher than the average pilus length. To this end,
we do not consider any process that could account for directional
memory [34]. Additionally, a one-dimensional stochastic model high-
lighting an underlying tug-of-war mechanism provides us with an
intuitive understanding of the persistent motion.

Furthermore, we study how the number of pili per cell affects the
motion of cells. Experimentally, it has been shown that the more pili
a cell possesses, the higher is the persistence time and the diffusion
coefficient of a cell [27]. Previous computational models were not able
to reproduce such behavior without including directional memory of
the pili [34].

For single cell motion on top of a plastic surface it was shown
that the distribution of velocities is bimodal and that cells having
the shape of a diplococcus have a higher probability to move in the
direction perpendicular to their long axis [28]. Here, we use our com-
putational model to address this question.

Studied parameter sets

If not stated otherwise we use the parameters given in table 2.1 while
applying the computational model and as input to our stochastic mo-
del. Although we investigated a wide range of parameter sets by sam-
pling over different values of the attachment rates, detachment forces
and detachment times (see table F.2), here we present only two of
them, given in table 3.1. These sets represent different regimes of how
cells use pili to move on a substrate.

For the first parameter set, called slow (short for slow binding and
unbinding dynamics), pili bind strongly but with a low rate to the

23
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24 motility of single bacteria on a substrate

substrate. In this regime, we assume that pili rarely attach to the sur-
face and we assume that the force-dependent detachment rate is gi-
ven by

γ
(sub)
det (F) =

1

t
(1)
d,ps exp

(
− F

F
(1)
d,ps

) , (3.1)

as motivated by the Kramers rate (see subsection 2.3.2). Here, F is
the pulling force, t(1)

d,ps is called the detachment time and F(1)
d,ps is the

detachment force.

slow fast

F
(1)
d,ps [pN] 180 1.28

F
(2)
d,ps [pN] − 33.8

t
(1)
d,ps [s] 10 0.85

t
(2)
d,ps [s] − 0.04

γatt,ps [s−1] 0.5 15

µtrans [µm (s pN)−1] 1 10

µrotat [(µm s pN)−1] 2 20

Table 3.1: Definition of pili-substrate-interactions parameter sets and the mo-
bilities used for modeling the substrate motion of cells.

The second parameter set, called fast (short for fast binding and un-
binding dynamics), is motivated by experiments in which the mean
detachment time of a pilus attached to a BSA coated silica bead was
measured [34]. Trapping the glass bead in an optical tweezer allowed
to create a drag force acting on the pilus. In the experiment, the deta-
chment rate was found to follow

γ
(sub)
det (F) =

1

t
(1)
d,ps exp

(
− F

F
(1)
d,ps

)
+ t

(2)
d,ps exp

(
− F

F
(2)
d,ps

) , (3.2)

with a second characteristic time t(2)
d,ps and a second characteristic

force F(2)
d,ps. For the fast parameter set, the detachment rate depends

on more parameters. In general, the detachment times and forces are
considerably smaller, compared to those chosen for the slow parame-
ter set. The attachment rate was chosen to be higher than those of the
slow parameter set. For the fast parameter set we assume that pili only
bind weakly to the substrate, but will frequently attach to a substrate.

Contrary to the previously defined values of the parameters of
the computational model, given in table 2.1, here we chose higher
values of the mobilities of the cells, corresponding to smaller fricti-
ons, for the fast parameter set. The chosen values correspond to the
friction of a cell moving within water. We pick higher values of the
mobilities because of the low values of the detachment forces of the
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3.1 stochastic model of bacterial motility on a substrate 25

Figure 3.1: (a) Sketch of the stochastic model of cell surface motion. The
cell possesses in total 3. The number of pili bound to the left
side is given by Nl, the number of pili bound to the right side is
given by Nr. The pili can constantly change between states of at-
tachment and detachment, as predicted by the stochastic model.
(b) States and transitions of the stochastic model for a cell with
three pili on each side. The arrows show the transition between
the different states (Nl,Nr), in particular due to attachment of
pili, the detachment of pili and the motion of the cell over pilus
attachment points. In the model, we assume a cell is moving if a
nonzero number of pili is attached only to one side.

fast parameter set. As computed in appendix D.1.1, for a translatio-
nal friction of µtrans = 1 µm (s pN)−1, the drag force of a single pi-
lus pulling a cell is given by approximately 2 pN, thus being in the
order of the detachment forces, shown in table 3.1. For a mobility
µtrans = 10 µm (s pN)−1, the force only has a value of approximately
0.2 pN, being one order of magnitude smaller than the detachment
forces. For the slow parameter set, we do not observe any difference
for the lower and the higher value of the translational and rotational
mobility.

3.1 stochastic model of bacterial motility on a sub-
strate

We apply our computational model, presented in chapter 2, to study
the substrate motion of single cells. In addition to this model, we use
a mathematical model to investigate the underlying mechanisms of
substrate motility of single cells. A simple one-dimensional stochastic
model allows us to easily study the tug-of-war mechanism.

The stochastic model, described in this section, shares similarities
to a previously published work by Müller et al. [38]. They suggest a
stochastic model to study the bidirectional transport of cargo due to
two populations of molecular motors, kinesin and dynein, pulling in
different directions and having load-dependent transport properties.

In the one-dimensional stochastic system a cell possessesNtotal ∈N

pili on each side, Nl pili being attached on the left side and Nr pili
being attached on the right side (see figure 3.1a). Then, we define a
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state (Nl,Nr) and study transitions between different states and their
effect on the motion of the cell.

In order to compute the probability P(Nl,Nr) one needs to know
the transition rates between the different states. An overview over the
different transitions that are possible within our stochastic model is
shown in fig 3.1b and discussed in the following. The resulting master
equation takes the form

dP(Nl,Nr)

dt
=

Ntotal∑
i=0

Ntotal∑
j=0

Tlr,ijP(i, j), (3.3)

with the transition matrix T , consisting of all rates describing the tran-
sitions between the different states

(i, j)→ (Nl,Nr) . (3.4)

Transition due to the attachment of pili to the substrate

We will consider cells with Nl and Nr attached pili on the left and
right side respectively. The attachment of an individual pilus is des-
cribed by the following transitions

(Nl,Nr)→ (Nl + 1,Nr) , (3.5)

(Nl,Nr)→ (Nl,Nr + 1) . (3.6)

For an individual cell

Nfree = Ntotal −Nl −Nr (3.7)

pili are not attached and can bind to the surface. Then the rates of the
transitions defined in 3.5 are given by

γ
(l)
a = Nfreeγatt, (3.8)

γ
(r)
a = Nfreeγatt, (3.9)

with the pilus attachment rate γatt. Here, we allow the cell to have all
pili attached to one side. The transitions mediated by attachment of
pili are visualized in figure 3.1b for cells.

Transitions due to the detachment of pili

Again, the cell has Nl pili attached to the left side and Nr pili atta-
ched to the right side. The detachment of a pilus corresponds to the
transitions

(Nl,Nr)→ (Nl − 1,Nr) , (3.10)

(Nl,Nr)→ (Nl,Nr − 1) . (3.11)

The detachment rate of pili is load-dependent. Before we can define
the rates for the transitions caused by pilus detachment, we first need
to compute the forces acting on the pili as a function of Nl and Nr.
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For a pilus we know that the characteristic force is given by Fstall
(see equation 2.3). Here, we assume that for a given configuration
(Nl,Nr) the pilus switches instantaneously to the stationary state, as
computed in appendix D.1. This corresponds to an infinitely large
spring constant kpili of the pili.

For the case that the same number N of pili is attached to the left
and right size, the drag forces Fl (Nl,Nr) and Fr (Nl,Nr) acting on the
individual pili on the left or right side are given by

Fl(N,N) = Fstall, (3.12)

Fr(N,N) = Fstall, (3.13)

thus, the pili reach their stalling force Fstall (see equation 2.3). When
they have reached this force, they can no longer retract and the system
reaches a stationary state. See appendix D.1.2 for more information.

If pili are only attached to one side (left or right), the individual
pili pulling forces are given by

Fl(Nl, 0) =
Fstall

1+ FstallµtransNl
vret

, (3.14)

Fr(0,Nr) =
Fstall

1+ FstallµtransNr
vret

, (3.15)

as derived in appendix D.1.1. Here, the dynamic parameters (the
translational mobility µtrans of the cell and the pilus retraction velo-
city vret) affect the magnitude of the force because the cell is moving
while being in this state. If we estimate the values of all parameters
characterizing this force we see that

Fstallµtrans

vret
� 1, (3.16)

so that the resulting forces are usually very small.
The last case we need to consider is attachment of pili on both sides,

but with Nl 6= Nr. In appendix D.1.3 we show that the drag forces of
single pili are then given by

Fl(Nl,Nr) = Fstall max
[
1,
Nr

Nl

]
, (3.17)

Fr(Nl,Nr) = Fstall max
[
1,
Nl

Nr

]
. (3.18)

Now we can compute the pilus detachment rate γ(sub)
det (F) of an

individual pilus on the left or right side, given in equation 3.1 and
equation 3.2.

The transition rates are then given by

γ
(l)
d = Nlγ

(sub)
det (Fl), (3.19)

γ
(r)
d = Nrγ

(sub)
det (Fr). (3.20)
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Figure 3.2: Sketch of the transition of pili states due to motion over a pilus
attachment point. Initially, all pili are on the right side and pull
on the cell. Due to the motion of the cell and the different dis-
tances of the pilus attachment points to the cell, at some point
the cell moves over one of the pilus attachment points. In the
stochastic model we assume that this switches the pilus from the
right side to the left one.

Transitions due to the motion of the cell

Next to attachment and detachment, the state (Nl,Nr) can also change
due to the motion of the cell in the following way:

(Nl, 0)→ (Nl − 1, 1) , (3.21)

(0,Nr)→ (1,Nr − 1) . (3.22)

This results from the motion of the cell over an attachment point of
a pilus (see figure 3.2). A cell can only move if all pili are bound to
one side (see next chapter). The attachment points of the pili have
the mean distance L from their start points. If we assume that these
lengths are exponentially distributed with the mean length L, then
the closest pilus has, on average, a distance L

N , if N pili are attached.
If a cell moves with the velocity vc, it needs the time tv = L

Nvc
to move

over a pilus. Then the rates of the transitions are given by

γ
(l)
m =

Nlvc

L
, (3.23)

γ
(r)
m =

Nrvc

L
. (3.24)

Here, we assume that a pilus cannot retract to a zero length while
being attached, because at least the domain of the pilus attached to
the substrate needs to point out of the cell membrane. Thus, we as-
sume that even a short pilus can still make the transition from one
side to the other one.

How we compute the velocity of the cell vc is shown in the follo-
wing paragraph.
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Describing the motion of the cell

Due to the instantaneous relaxation of pili, corresponding to a large
pili spring constant kpili −→∞, the cell can only move when all pili
are attached on one side, so that we either have a state (Nl, 0) or
(0,Nr) (see appendix D.1). A cell will always move in the direction
in which the pili are attached, thus it will move to the left for states
(Nl, 0) and to the right for (0,Nr).

In appendix D.1.1 we show that the velocity of a cell vc, having N
pili attached on one side, is given by

vc =
vret

1+ vret
FstallNµtrans

, (3.25)

with the pilus retraction velocity vret, the characteristic pilus force
Fstall and the translational mobility µtrans (see chapter 2 for a definition
of these quantities). By estimating the values of all parameters as close
to the experiment as possible for individual cells we have

vret

FstallNµtrans
� 1, (3.26)

so that the cell velocity of single cells could be approximated by
vc ∼ vret.

Solving the stochastic model

In order to compute the steady state solution P(Nl,Nr) of the probabi-
lity of states (Nl,Nr) we need to write down the complete transition
matrix T and set

dP(Nl,Nr)

dt
= 0 (3.27)

for all states (Nl,Nr). This system of equations can be solved numeri-
cally with Matlab R2015a.

In order to compute a trajectory of the cells we apply a Gillespie
algorithm [102, 103], allowing us to estimate quantities like the mean
squared displacement and the velocity autocorrelation function. The-
refore, we assume that the transition rates correspond to Poisson pro-
cesses where, for a given rate γ, the time t of the next event is given
by

p(t) = γ exp (−γt) . (3.28)

The algorithm then has the form

1. Compute the six transition times for all three processes (atta-
chment, detachment and the motion transition) from the expo-
nential distribution of times.

2. Pick the smallest transition time.

3. Execute the transition of the smallest transition.
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4. Compute the new position of the cell and save the time.

5. Go back to step 1.

We verified that the probability of states agrees with the solution of
the system of equations.

Estimating the parameters of the stochastic model

The parameters of the stochastic model, specifically the number of
free pili Ntotal, the attachment rate γatt and the mean pili length L, do
not necessarily need to coincide with the parameters of the computati-
onal model (see table 2.1 and table 3.1). Due to the three-dimensional
shape of the cell, a pilus emerging from the cell membrane, first needs
to be long enough to reach the substrate, reducing the mean atta-
chment rate of the pili.

In chapter C we will present a simple geometric model that al-
lows us to estimate those parameters as a function of the cell/co-
lony size and the parameters corresponding to the computational
model. In this model, we neglect that a cell has the shape of a di-
plococcus. Instead, we assume that a cell has a spherical shape of ra-
dius R = 0.7 µm (as estimated in appendix F.3.2 for a single cell) and
15 pili grow stochastically from its surface. The pili protrude perpen-
dicularly from the cell surface, until they collide with the substrate.
From this point on, they will slide along the substrate, analogously
to the computational model. By considering the mean length of pili,
the pilus velocities and the attachment rate of the pili tips (all taken
from table 2.1 and table 3.1), we can estimate the effective attachment
rate of pili and the mean displacement a pilus is able to mediate on
the substrate. The predicted values for the two parameter sets (slow
and fast) are given in table 3.2. For both parameter sets we observe ef-

slow fast

γatt [s−1] 0.09 1.95

L [µm] 1.58 0.59

Table 3.2: Parameters of the stochastic model of cell motility on a substrate,
estimated from geometric considerations.

fective attachment rates γatt that are smaller than the pilus attachment
rate γatt,ps with the substrate. This results from the fact that each pi-
lus first needs to protrude a certain distance before it collides with
the substrate.

For the mean displacements on the substrate L a pilus can mediate,
we observe that the value is larger for the slow parameter set, compa-
red to the fast parameter set. This behavior originates from the fact
that for higher attachment rates, pili will attach within a short time
after bringing its tip in the vicinity of the substrate. After attachment,
they will immediately start to retract, thus a higher attachment rate
corresponds to a shorter mean length of the pili.
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Figure 3.3: (a) Trajectories of in silico cell, resulting from the computational
model, for the fast and slow parameter set. (b) Distribution of
angles between the direction of motion of a cell (projected on the
substrate) and its long axis. Here, 0◦ corresponds to a motion
parallel to the long axis and 90◦ to a motion perpendicular to
the long axis, connecting the two spheres of the diplococcus. (c)
Histogram of velocities for both parameter sets.

3.2 comparison of theory and experiment

Now, we will use the presented modeling approaches (the computati-
onal model presented in chapter 2 and the stochastic model discussed
in chapters 3.1) to study the motility of single cells on a substrate.

We will investigate the motion of single cells and the origin of per-
sistent motion over length scales larger than the length of individual
pili [27, 28, 34]. In particular, we will study how a simple tug-of-war
mechanism can induce such behavior.

Afterwards, we will study how the pili number affects the motion
of individual cells and show that cells with more pili can exhibit a
more persistent motion, in agreement with experimental observati-
ons [27].

3.2.1 The role of pili dynamics during the motility of single cells

Here, we study how individual cells use type IV pili to move on top
of a substrate. We first use our computational model (see chapter 2)
to study the motility of cells for two different parameter sets, given
in table 3.1. The parameters used for our simulations are given in ta-
ble 2.1. Information about the simulation details are given in appen-
dix F.1. Examples of trajectories projected on the substrate are shown
in figure 3.3a.

We first study the distribution of angles between the direction of
motion and the long axis of the dumbbell-shaped cell. Experimentally,
it was shown that cells prefer to move in the direction perpendicular
to their long axis. In our simulations, we see the same behavior for
both parameter sets (see figure 3.3b). The intuitive explanation for
this behavior is the fact that due to the diplococcus shape, a cell has
more pili in the direction perpendicular to its long axis, compared to
the direction parallel to its long axis. The more pili a cell possesses,
the more likely it is that any pilus attaches in this direction, thus
mediating motion in the direction of the attachment point.
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From the trajectories, we compute the histogram of absolute velo-
cities of the cells (see figure 3.3c), which exhibits a bimodal behavior
similar to cells moving on a plastic substrate coated with BSA [28]. It
was shown experimentally that the velocity possessed two peaks, one
at 0 µm/s and another peak at a non-zero velocity. In our simulati-
ons, we observe a not so pronounced bimodal behavior of the distri-
bution of velocites for the slow parameter set. The probability density
function decreases with increasing velocities and only exhibits a small
peak for the velocity 2 µm/s, corresponding to the characteristic pilus
retraction velocity and most likely results from phases where only a
single pilus is attached to the substrate. For the fast parameter set we
observe a different behavior. For 2 µm/s, which is the characteristic
pilus retraction velocity vret, we observe a pronounced peak in the
velocity histogram. For 0 µm/s we see another peak, corresponding
to a cell that is not moving. Velocities that are larger than the pilus
retraction velocity do appear frequently. The origin of this surprising
behavior is geometrical. Short retractions of multiple pili can corre-
spond to large displacements of the cell. Thus, while a pilus may
retract with the velocity vret, the cell can move with a higher velo-
city. This effect is discussed in more detail in appendix D.2. The zero
velocity peak for the fast parameter set could either originate from
the fact that many pili are attached to the substrate and the cell is
trapped between them or from a situation where no pilus is attached.

In order to answer this question, we can study quantities that are
not so easily accessible in experiments with the help of our theoretical
models. More specifically, we can investigate the number of pili that
are attached to the substrate and generate an active pulling force (see
figure 3.4a) and how this number is changing with time.

For the distribution of the number of attached pili (generating a
nonzero pulling force) we observe that the average number is lar-
ger for the slow parameter set, characterized by strong pili-substrate
interactions, compared to the fast parameter set with very small pili-
substrate detachment forces F(1)

d,ps and F(2)
d,ps. For the fast parameter set

we observe that in roughly 30 % of the cases there are no pili are
attached to the substrate. In this case, the cell is not able to move,
thus explaining the peak for zero velocity in the velocity histogram
(figure 3.3b). While this result first appears counter-intuitive because
it was assumed that cells use pili to move while being permanently
attached to a substrate, it was shown experimentally that cells someti-
mes do not have pili on a glass surface coated with poly-D-lysine or
collagen [24]. Additionally, we were computing the mean velocity of
a cell as a function of the number of attached pili (generating a non-
zero force). For the slow parameter set we observe that the cell is the
fastest when only one pilus is attached to the substrate. In this case,
the cell moves in the direction of this pilus with the characteristic pi-
lus velocity vret until the length of the attached pilus becomes zero.
For larger number of pili however, it appears to be more likely that
pili pull in opposite directions and thus trap the cell. For the fast pa-
rameter set we observe the highest velocity for 2-3 attached pili. This
behavior must result from collective interactions of the pili that in-
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Figure 3.4: (a) Distribution of attached and actively pulling pili for a single
cell moving on a substrate. (b) Mean velocity of a cell moving
on a substrate as a function of its current number of attached
pili. Here, we only count those attached pili that are generating a
pulling force and thus participate in the motion of the cell. The er-
ror bars show the standard deviation, a measure for the width of
the distribution of velocities. For both parameter sets we observe
also a non-zero velocity for the case that no pilus is attached.
This results from the fact that we compute the velocity from the
displacement of the cell within the time interval ∆t = 0.5 s. In
this time a pilus can easily attach, mediate a motion and detach.

crease the velocity of the cell, for example by a process discussed in
appendix D.2.

From the trajectories, we can also characterize the statistical pro-
perties of bacterial motion on a substrate, specifically the mean squa-
red displacement and the velocity autocorrelation function (see fi-
gure 3.5).

By computing the mean squared displacement of individual cells
for both parameter sets (see figure 3.5a) we observe a diffusive be-
havior for large times. For this limit, we can compute the diffusion
coefficient D, resulting from

MSD(∆t) = 〈[r(t+∆t) − r(t)]2〉t ' 2dD∆t, (3.29)

and given in table 3.3. Here, r(t) is the time-dependent trajectory of
the cell, projected on the substrate. The parameter d is the dimensi-
onality of the system, defined to be d = 2 because we only consider
the motion parallel to the substrate. The values of the diffusion coeffi-
cient give a quantitative proof that the cells for the fast parameter set
are more motile than those of the slow parameter set. For short time
intervals we observe a superdiffusive behavior, which corresponds to
a persistent motion with a characteristic time tchar. In order to esti-
mate this characteristic time, we computed the velocity autocorrela-
tion function (see figure 3.5b), described by

VACF(∆t) = 〈v(t+∆t)v(t)〉t = v2char exp
(
−
∆t

tchar

)
, (3.30)

with the vectorial particle velocity v(t), the correlation time tchar and
the characteristic velocity vchar (see chapter 1.2). The characteristic
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Figure 3.5: (a) Time averaged mean squared displacement of in silico sin-
gle cells moving on a substrate for the parameter sets, given in
table 3.1. The black lines show fits of equation 3.29, given in ta-
ble 3.3. (b) Time averaged velocity autocorrelation function of in
silico single cells moving on a substrate. The black lines show fits
of equation 3.30, where the parameters are given in table 3.3.

slow fast

tc [s] 0.48± 0.09 0.87± 0.04
vc [µm/s] 0.76± 0.04 1.83± 0.02

D [µm2/s] 0.18± 0.03 1.57± 0.03

Table 3.3: Fitting results of the MSD and VACF of single cell motion on a
substrate from the computational model.

times and velocities for the two parameter sets are given in table 3.3.
From them, we can compute the characteristic length scale of motion

lchar = vchartchar. (3.31)

The mean pili length lc was chosen to be 1.5 µm in the computati-
onal model. For the slow parameter set we compute a value around
0.36 µm, thus being considerably smaller than the mean pili length.
For the fast parameter set we get a length scale of roughly 1.6 µm,
thus being slightly larger than the characteristic pilus length that was
taken as an input to the model and pointing in the direction of persis-
tent motion that, due to the collective interactions of pili, can exceed
the length of individual pili. By comparing these numbers to the ex-
perimental values [27], tchar = 1.4± 0.2 s, vchar = 1.6± 0.1 µm/s and
lchar = 2.2 µm, we see that the persistence is weaker in our computa-
tional model. In subsection 3.2.2 we suggest that this behavior may
originate from a underestimation of pili numbers such that a cell pos-
sesses possibly more than 15 pili. For higher pili numbers, the per-
sistence can increase and reach lengths that are comparable to the
experimental results.

Before we move to the stochastic model, we want to discuss the
experiments that lead to the conclusion that cells exhibit persistent
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Figure 3.6: Distribution of pili lengths of an in silico cell on a substrate. (a)
Distribution of the distance of the pili start and end point of all
pili. (b) Distribution of the distance of the pili start and end point
projected on the substrate of attached pili.

slow fast

〈l(all)
xyz 〉 [µm] 1.35 1.16

〈l(att)
xy 〉 [µm] 1.15 0.93

Table 3.4: Mean pili lengths as predicted by the computational model.

motion over distances larger than the mean pili length and want to
discuss which pilus length is measured experimentally. Therefore, we
were computing the mean pilus length of all pili from our simulati-
ons (see figure 3.6). We use two different definitions of the pili length.
In the first definition we compute the length of all pili, attached and
free, by computing the distance between their start point and end
point in three dimensions, called l(all)

xyz . For the second definition we
try to be as close to the experiment as possible, where the pilus length
is measured by transmission and electron microscopy [27, 28]. The
preparation of the samples could affect the pili, especially those that
were not attached to the substrate. They may break, bend or just de-
tach from the cell, but most likely will not keep the position that they
had before sample preparation. Additionally, in the experiment one
is only measuring the pilus length projected on the substrate. Thus,
we define the second length l(att)

xy as the distance of the start and end
point of attached pili projected on the substrate, called l(att)

xy . The dis-
tribution of these lengths are shown in figure 3.6 for both parameter
sets.

By computing the mean values from those distributions (see ta-
ble 3.4) we find that all lengths are smaller than the mean pili length
lc = 1.5 µm that was picked as an input parameter of the simulation.
Thus, we suggest that in experiments one does not measure the real
mean pili length lc which is only dependent on the pilus velocity and
the rate of switching from the assembly state of the polymer to its
disassembly state, but instead we measure the lengths of pili affected
by attachment and detachment. The discrepancy between the input
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Figure 3.7: Trajectory of a cell moving on a substrate computed by the sto-
chastic model for the fast parameter set. (a) Attached pili on the
left side, Nl, and on the right side, Nr. (b) Trajectory x of a cell as
a function of time t.

length lc of the model and the measured characteristic pili length ori-
ginates from the switching from protrusion to retraction of pili after
attachment [35]. Considering these effects, in our simulations we find
values comparable to those measured experimentally, ranging from
0.9 µm [27] to 1.2 µm [28].

If we assume that the lengths measured experimentally correspond
to l(all)

xyz or l(att)
xy , than the measured characteristic length of the persis-

tent motion, estimated to be around 1.6 µm for the fast parameter set
is considerably higher as the measured length. We clearly observe
a persistence over lengths higher than the measured pili length, as
suggested from experimental measurements [27].

While the computational model exhibits excellent qualitative and
even quantitative agreement to experimental data, due to its com-
plexity it is hard to really understand the processes that drive such
behavior. Our weapon of choice to study the underlying processes is
a simplified stochastic model, introduced in chapter 3.1.

Here, we study the motion of a cell in one dimension. All parame-
ters either agree with the computational model discussed previously
or were estimated as shown in section 3.1 and appendix C.

First, we applied a Gillespie algorithm to construct a trajectory of
the cells. An example of such a trajectory is shown in figure 3.7 for
the fast parameter set. Here, one can see that the cell exhibits phases
where more than three pili are attached on one side, while on the
other side none or only one pilus is attached. In this case, the cell is
moving in the direction of the higher number of attached pili. After a
certain time, the cell is able to escape such a state and the dominant
side can switch.

We can also compute the probability distribution of states, either
by analyzing the trajectories computed by the Gillespie algorithm or
by solving the transition matrix. The result is shown in figure 3.8. For
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Figure 3.8: Probability of states of a single cell for the stochastic model, for
the (a) slow parameter set and the (b) fast parameter set. The color
bar corresponds to the probability of the states.

the two parameter sets we see completely different kinds of behavior.
While the cells following the slow parameters have the highest pro-
bability to have pili attached on both sides at the same time, for the
fast parameter set cells preferentially have pili only on one side. This
observation can explain why cells for this parameter set are more mo-
tile, as predicted by the computational model, and agrees with the
behavior observed in figure 3.7.

In order to check for consistency, we compute multiple quantities
that were previously investigated using our computational model.

We started with the velocity histogram (see figure 3.9a). For the
slow parameter set we observe a large peak for a zero velocity and
a smaller peak for a velocity of roughly 2 µm/s, corresponding to
the characteristic pilus retraction velocity. Due to the discrete nature
of states in the model, all other velocities have negligible probabili-
ties. The observed behavior shows qualitative agreement to the one
observed for the computational model (see figure 3.3b). For the fast
parameter set we only observe a peak for 2 µm/s, corresponding to
the persistent motion of the cell in one direction.

The stochastic model predicts that in less than 5% of time no pilus
is attached to the surface. This can be also seen in figure 3.9b where
we show the histogram of attached pili. The distributions for both
parameter sets, in agreement to the computational model, differ such
that on average more pili are attached for the slow parameter set.

Additionally, we can compute the mean squared displacement and
the velocity autocorrelation function for the one-dimensional trajecto-
ries and from them estimate the diffusion coefficient D of the cellular
motion and the characteristic velocity vchar and time tchar of the persis-
tent motion. Analogously to the results of the computational model,
we observe a diffusive regime for large times for the mean squared
displacement (see figure 3.3c), from which we computed the diffu-
sion coefficient D, given in table 3.5. The values have the same order
of magnitude as those computed from the trajectories simulated by
the computational model (see table 3.3). Again, the cells following
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Figure 3.9: Statistical properties of single cell motion, computed from the
stochastic model. (a) Histogram of velocities of a cell moving
on a substrate for the slow and fast parameter set (see table 3.1).
(b) Probabilities of number of attached pili for a cell moving on
a substrate modeled by the stochastic model. (c) Time averaged
mean squared displacement of single cells moving on a substrate
for the parameter sets, given in table 3.1, as predicted by the sto-
chastic model. The black lines show fits of equation 3.29 with
parameters given in table 3.5. (d) Time averaged velocity auto-
correlation function of in silico single cells moving on a substrate.
The black lines show fits of equation 3.30 with parameters given
in table 3.5.
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slow fast

tc [s] 0.61± 0.02 0.74± 0.02
vc [µm/s] 0.77± 0.02 1.64± 0.02

D [µm2/s] 0.38± 0.01 1.64± 0.04

Table 3.5: Fitting results of the MSD and VACF of single cell motion on a
substrate from the stochastic model.

the fast parameter set are considerably faster than those following the
slow parameter set.

By computing the characteristic times tchar and velocities vchar from
the velocity autocorrelation (see figure 3.3d and table 3.5), we again
see qualitative agreement to the computational model. On first sight,
the characteristic lengths, having values of 0.47 µm for the slow para-
meter set and 1.21 µm for the fast parameter set, are smaller than the
persistence lengths computed from in the computational model. If we
compare the lengths to the mean pilus displacement L (see table 3.2),
we observe that the persistence length for the fast parameter set is,
indeed, higher than the mean pili length in the stochastic model. This
behavior is qualitative similar to the results of our computational mo-
del and shows that the suggested tug-of-war mechanism can mediate
persistent motion.

3.2.2 Pili number dependence of the single cell motility

After studying the substrate motion of a single cell with parame-
ters that were motivated by experiments, we now focus on the pili-
mediated motion of bacteria as a function of the number of available
pili. Previously, this dependence was studied experimentally by the
group of Dr. Berenike Maier (Universität Köln) [27]. They used a de-
repressible pilE strain of Neisseria gonorrhoeae and were able to show
that the more pili a cell possesses, the longer the characteristic time
of the persistent motion.

First, using our computational model, we simulated cells with a
fixed number of pili Npili and computed the characteristic time, velo-
city and length of the motion, the diffusion coefficient and the average
number of pili attached to the substrate (see figure 3.10) with the help
of our computational model 2.

In our simulations we observe that the diffusion coefficient is ra-
pidly rising with increasing number of pili for the fast parameter
set. For the slow parameter set, the diffusion coefficient is conside-
rably smaller and decreases with increasing number of pili (see fi-
gure 3.10a).

Additionally, we computed the characteristic time tchar (see equa-
tion 3.30 and figure 3.10b) and found that in both cases the times
increase with higher pili numbers. For the fast parameter set we ob-
serve a behavior that is almost identical to experimental results [27].
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Figure 3.10: Cell motion as a function of the number of pili as modeled by
the computational model for the slow and fast parameter set
(see table 3.1). (a) Diffusion coefficient D of an individual cell
as function of the number of pili. The diffusion coefficient was
estimated from the time-averaged mean squared displacement
and fitted with the equation 3.29. (b,c) From the velocity auto-
correlation function it was possible to estimate the characteristic
time tchar and velocity vchar of the motion (see equation 3.30). (d)
By multiplying the time tchar and the velocity vc we computed
the characteristic length of the persistent motion of a cell on a
substrate. The mean pili length is an input parameter of the si-
mulation and has a value of 1.5 µm, thus for higher numbers
the persistent motion can go over length scales considerably
longer than the length of individual pili. (e) Mean number of
pili attached to the substrate. The error bars show the standard
deviation, a measure for the width of the distribution.
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The characteristic velocity vchar is also increasing for the fast para-
meter set (see figure 3.10c). With a higher number of pili cells move
with higher velocities and for longer times in a given direction. Con-
trary to this behavior, for the slow parameter set, the velocity vchar is
decreasing with increasing number of pili Npili.

From the velocity vchar and tchar we can also compute the persis-
tence length of motion lchar (see figure 3.10d) and see that for the
fast parameter set this length can clearly exceed the characteristic pili
length lc = 1.5 µm. For the slow parameter set, the persistence length
is smaller than the mean pili length and only changes weakly with
pili number.

The last quantity we studied is the average number of pili attached
to the substrate (see figure 3.10e). In both cases, the number is in-
creasing with increasing number of pili. Additionally, the numbers
for the fast parameter set are considerably smaller than those for the
slow parameter set, resulting from the weaker binding properties that
we assume for this parameter set and the constant attachment and
detachment of the pili.

In order to understand the origin of the increasing motility with an
increasing number of pili, we applied our stochastic model to study
the motion of single cells with a changing number of pili. The results
are shown in figure 3.11.

Again, we observe that the diffusion coefficient D, the characteris-
tic time tchar, the velocity vchar and the resulting persistence length
of motion lchar increase with higher numbers of pili Npili for the fast
parameter set. For the slow parameter set we observe a similar but
weaker behavior. This result does not agree with the computational
model for the characteristic time tchar. Additionally, for the fast para-
meter set, the characteristic time tchar increases much faster with in-
creasing number of pili compared to the computational model. This
results from the fact that the cell is ”locked” in a state where a large
number of pili is attached on one side. If a pilus attaches on the other
side, it will pull against them and a large force will act on the pilus,
forcing it to detach. This process is magnified by the fact that we as-
sume that the detachment rate increases exponentially with force (see
equation 3.2). While a similar mechanism can also appear for cells mo-
deled by the computational model, here the cell is not only moving
in one dimension but two, and will also be affected by a rotational
diffusion. Due to this diffusion, the effective diffusion coefficient and
the persistence time tchar may decrease and thus could cause the ob-
served behavior. Additionally, the number of attached pili is higher
for high numbers of pili for the fast parameter set, compared to the
slow parameter set.

We suggest that the difference of the predictions between the two
modeling approaches originate from the neglected pili dynamics in
the stochastic model. There, we assume that an attached pilus rea-
ches its final force (computed in appendix D.1) instantaneously. For
very low detachment forces, the probability that a pilus detaches be-
fore it even comes close to the final force cannot be neglected. We
compute the probability density function of detachment times for the
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Figure 3.11: Properties of the cell motion as a function of the number of pili
as modeled by the stochastic model for the slow and fast para-
meter set (see table 3.1). (a) Diffusion coefficient D of a cell as
function of the number of pili. The diffusion coefficient was esti-
mated from the time-averaged mean squared displacement and
fitted with equation 3.29. The value of the diffusion coefficient
for the fast parameter set is growing rapidly. (b,c) We used the
velocity autocorrelation function 3.30 to estimate the characteris-
tic time tchar and velocity vchar of the motion. (d) Characteristic
length lchar of the persistent motion of a cell on a substrate. (e)
Mean number of pili attached to the substrate. The error bars
show the standard deviation, a measure for the width of the
distribution.
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Figure 3.12: Dynamics of pili forces for a single cell. Here, we study the case
of a cell having two pili attached to the left side and one pi-
lus attached to the right side. The system and its solution are
introduced in appendix D.1. The parameters were taken from
table 2.1. Additionally, we study the detachment dynamics gi-
ven by the fast parameter set. (a) Forces as a function of time,
as derived in appendix D.1.3. (b) Survival probability of indivi-
dual pili to not detach from the substrate. (c) Probability density
function of survival times.

case where two pili of a single cell are attached on one side and pull
against one pilus, attached to the other side. How to compute these
forces is shown in appendix D.1.3 and visualized in figure 3.12a. The
detachment rate γd then follows from equation 3.2. The probability
for each pilus on both sides to detach can be obtained from

Ṗsurv(t) = −γd(t)Psurv(t), (3.32)

Psurv(0) = 1. (3.33)

The solution of this equation is given by

Psurv(t) = exp
[
−

∫t
0

dt ′ γd
(
t ′
)]

(3.34)

and the result is shown in figure 3.12b. The probability density function
of detachment times is then given by

ρsurv(t) = −Ṗsurv(t) = γd(t) exp
[
−

∫t
0

dt ′ γd
(
t ′
)]

. (3.35)

The resulting distribution is shown in figure 3.12c. This distribution of
detachment times does not follow an exponential distribution, as one
would expect if the detachment would be described by a Poisson pro-
cess, but has a more complex shape with peaks around 0.01− 0.02 s.
If we now estimate the corresponding mean detachment rates of the
individual pili, we see that they are in the order of 100 Hz. For a pilus
under a load Fstall = 180 pN, the detachment rate reaches more than
5000 Hz for the fast parameter set in our stochastic model with in-
stantaneous dynamics. Thus, the pili in the computational model are
not getting detached from the substrate with such high rates as the
ones in the stochastic model. Such a process may be able to reduce
the motility of the cell and will reduce its persistent motion.

To summarize this section, we have shown that our models pre-
dict an increase of the characteristic time and diffusion coefficient of
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bacteria for increasing numbers of pili. The characteristic length scale
of motion can exceed the characteristic length of the pili and for cells
with 20− 30 pili it can reproduce the experimentally observed beha-
vior [27], assuming that in experiments the counted number of pili
gives a considerably smaller number than the real number of pili a
cell possesses. The origin of this discrepancy may be the sample pre-
paration process for the transmission electron microscope or the fact
that only attached pili are counted and free pili are ignored.

3.3 summary

In this chapter, we presented two different approaches to investigate
the motion of individual cells of the bacterium Neisseria gonorrhoeae
on a substrate. We compared the results of our simulations to publis-
hed experimental data. We were able to show that the computational
model agrees with the experiments.

Previously, it was suggested that the persistent motion of indivi-
dual cells and the increasing motility with higher numbers of pili re-
quires a mechanism of directional memory, provided by re-elongation
of fully retracted pili or bundling of pili [34]. Here, we show that these
mechanisms are not needed to generate persistent motion over distan-
ces that are larger than the mean length of the pili. In agreement with
previous experiments [27], our model is also able to reproduce a incre-
asing motility with higher numbers of pili. This is particularly true
for fast binding and unbinding dynamics, suggesting that pili bind
weakly to a substrate, but therefore frequently with high attachment
rates, compared to the other times scales involved.

The mechanism that is driving the persistent motion of cells is re-
miniscent of a tug-of-war, a process that was earlier investigated for
bidirectional transport by molecular motors [38]. When a single pilus
is trying to pull against the side with the larger number of pili, it will
feel a larger force and, due to the exponential form of the detachment
rate (see equations 3.1 and 3.2), more easily detach on its ”weaker”
side. Thus, one side will win for a certain time interval, in which the
cell moves in this direction. During this time, new pili can attach to
the winning side, while shorter pili may detach or switch to the op-
posite side and detach. This way, there are constantly pili attached on
the winning side and the cell moves persistently into one direction.
The cell can only escape such an attracting state (many pili on the
winning side, no pili on the other side) by stochastically decreasing
the number of pili on the winning side such that the pili on the losing
side have a chance to take the leading role. While the tug-of-war me-
chanism is closely related to the one suggested by Müller et al. [38],
we expanded their model by introducing a new length scale. This
length results from the displacement a pilus can mediate and allows
us direct characterization of persistent motion.

In our simulations we found that for fast binding and unbinding
dynamics (described by the fast parameter set), cells often do not have
any pili attached to the substrate. In vivo, the cells and colonies are
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confronted with strong flows and thus will need to be constantly at-
tached to the substrate. Thus, it may be preferential to bind stronger
to the substrate. In this case, slow binding and unbinding dynamics
and stronger attachment (described by the slow parameter set) may
be a better choice to describe the behavior of single cells moving on a
substrate due to their pili.

When several bacteria come close to each other, their pili can bind
and the cells will form microcolonies. In the next chapter, we will
study the dynamics of such colonies and the internal dynamics of
cells within such colonies.
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4
C O A L E S C E N C E A N D I N T E R N A L D Y N A M I C S O F
B A C T E R I A L M I C R O C O L O N I E S

When two microcolonies of N. gonorrhoeae are moving over a substrate
and reach immediate vicinity, they can interact due to the binding of
their pili. In this case, the pili will mediate an attractive force between
the colonies that will lead to their coalescence: two smaller colonies
merge and form a new, larger colony (see figure 4.1). This is a fun-
damental step during the formation of microcolonies [59]. Due to the
fact that the merging of two microcolonies is accompanied by a rear-
rangement of cells within the colony, studying coalescence will also
help us to learn about the internal dynamics of colonies.

One way to characterize the dynamics of the coalescence is to quan-
tify the properties of the bridge (also called ”neck”) forming between
the two colonies (see figure 4.1). In particular, the bridge height h is
defined as the diameter of the bridge. For viscous liquid droplets it
was shown by Frenkel [104] and Eshelby [105] that the initial closure
of the bridge can be described by

h(t) = h0

√
t

th
, (4.1)

with the characteristic time

th =
h0η

2χ
. (4.2)

Here, η is the viscosity of the liquid droplet and χ its surface tension.
While equation 4.1 is only valid for the initial closure of the bridge,
a more general equation describing the full coalescence was given by
Flenner et al. [106],

h(t) = 2
2
3h0

√[
2− exp

(
−
t

2th

)]− 2
3
[
1+ exp

(
−
t

2th

)]− 4
3
[
1− exp

(
−
t

th

)]
.

(4.3)

This equation corresponds to an relaxation of the area of the bridge.
Here, we analyze the coalescence of N. gonorrhoeae microcolonies and
estimate the time scales, characterizing the bridge closure. This allows
us to check whether bacterial colonies exhibit properties similar to
those of viscous liquid droplets.

Figure 4.1: Definition of the bridge height.

47
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Figure 4.2: (a) Coalescence of colonies of N. gonorrhoeae. The red lines show
the detect edges of the colonies. Bar = 10 µm. (b) Coalescence of
differently labeled colonies of N. gonorrhoeae. The green colonies
consists of cells labeled with YFP, the red colony consists of cells
labeled with tdtomato. Bar = 10 µm.

In order to study the dynamics within a microcolony, we then apply
our computational model (see chapter 2) and characterize quantities
that are not accessible experimentally. We sampled over a wide range
of parameters, in particular the detachment forces, detachment times
and the attachment rate of pili. The simulation and their results were
previously published in [60].

4.1 experiments on microcolony coalescence and their

internal dynamics

We studied the coalescence and internal dynamics of Neisseria go-
norrhoeae microcolonies by performing experiments of colony coales-
cence and single cell tracking within microcolonies. Therefore, we
applied the experimental protocols, depicted in appendix B and the
algorithms described in appendix E to analyze the experimental ima-
ges. The experimental coalescence data were contributed by the Ni-
colas Biais (Brooklyn College), the experiments studying the motility
of cells within colonies were performed by the author of this thesis
in the lab of Nicolas Biais. The analysis of the data was performed by
the author.
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a

b

Figure 4.3: Quantification of the time scales involved in N. gonorrhoeae co-
lony coalescence. (a) Detected edges of the midplane of two co-
alescing colonies as described in appendix E.1. (b) Image of the
bridge detected in the binary image of two coalescing microco-
lonies. (c) image of the ellipse fitted to the binary image of two
coalescing microcolonies and of its short and long axis a and b.
Bar = 10 µm.

4.1.1 Coalescence of N. gonorrhoeae microcolonies

In order to study how bacterial colonies coalesce, the microcolonies
first self-assembled and were then brought on top of a BSA coated
coverglass. The coating was used to minimize the interactions of the
pili with the substrate. Then, the colonies were brought close to each
other, either by their own motion over the substrate, or by using an
optical tweezer. We used a DIC microscope to image the midplane
of two equally sized microcolonies performing a coalescence (see fi-
gure 4.2a).

From these experiments we made two important observations. Initi-
ally, the colonies approach each other rapidly until they collide. This
process takes only a few minutes. Afterwards, the coalescence ap-
pears to be either slowed down or arrested and the colony exhibits
the ellipsoidal shape.

Additionally, we mixed colonies made from two distinctly labeled
cells. Specifically, colonies formed by cells labeled with YFP and td-
tomato were brought together. Besides of the labeling of the cells,
they exhibit the same behavior as wildtype cells. When two colonies
consisting of the two cell populations came close to each other, they
started to coalesce (see figure 4.2b). We observe that the cells of the
colonies almost do not mix and exhibit a flat contact region.

To quantify these observations, we characterized the time scales of
coalescence by measuring the time-dependence of two quantities: the
height of the bridge forming between the two colonies and the ratio of
the short and long axis of an ellipse fitted to the shape of the detected
edge of the colonies. The way how we determined this quantities is
depicted in appendix E and figure 4.3.
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The time-dependence of the bridge height h of two coalescing mi-
crocolonies is shown in figure 4.4a. We fitted two different functions
to describe the time-dependent behavior of the bridge height,

h(t) = 2
2
3h0

[
2− exp

(
−
t+ t0
2th

)]− 1
3
[
1+ exp

(
−
t+ t0
2th

)]− 2
3

×
[
1− exp

(
−
t+ t0
th

)] 1
2

(4.4)

and

h2(t) = h0

√
1−α exp

(
−
t

t1

)
− (1−α) exp

(
−
t

t2

)
. (4.5)

For both equations, the bridge height converges towards the diame-
ter of a sphere having the combined volume of both initial aggregate
large times t. Equation 4.4 is similar to the function determined by
Flenner et al. (see equation 4.3). When two colonies attract each ot-
her due to bundling of their pili, they will approach each other until
they collide and during this process start the closure of their bridge.
In figure 4.2a one can see that after this initial collision the bridge
is already closed considerably within 10 s. In order to reduce the ef-
fect of this initial collision, we introduced the offset time t0 in equa-
tion 4.4. Equation 4.5 assumes that the closure of the bridge has two
time scales, the initial approach of the colonies that takes time t1 and
the closure of the bridge, t2. The equation corresponds to a exponen-
tial relaxation of the area. Here, the parameter α guarantees that the
bridge converges towards h0.

We fitted these two functions to the experimental data, as shown
in figure 4.4a, and present the fitting parameters in table 4.1 for two
different experiments.

We observe that the relaxation time th as predicted by Flenner et
al. [106] for the closure of the bridge corresponds to the larger time
scale t2 of the double exponential function and is the order of 5− 10
minutes. The lower time scale t1 is only in the order of a few seconds
and corresponds to the initial collision of the colonies. Because of this
collision, the offset time t0 was introduced and is also in the order of
a few minutes.

In order to estimate the time scale of the relaxation of the ellipsoidal
colony, forming after the coalescence of the two colonies, towards
the final spherical shape, we fitted an ellipse to the midplane of the
colony and computed the axis ratio of the short axis a and the long
axis b (see figure 4.3c). For the late coalescence, we assume that the
ratio converges towards 1, following the equation

γ =
a

b
= 1−β exp

(
−
t

tγ

)
. (4.6)

The fitted parameters for the same experimental movies as for the
bridge height are shown in table 4.1. The behavior of the axis ratio
is shown for one experiment in figure 4.4b. The relaxation time tγ is
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Figure 4.4: (a) Bridge height during the coalescence of N. gonorrhoeae mi-
crocolonies. Here, experimental data for the movie shown in fi-
gure 4.2 are presented and the fitting results for t1 and t2. (b)
Axis ratio of the short and long axis of a ellipse fitted to the mid-
plane of two coalescing colonies of N. gonorrhoeae microcolonies.
Additionally, the time scale of the bridge closure is estimated by
an exponential function (see green line and equation 4.6).
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experiment 1 experiment 2

h0 [µm] 18.7± 0.1 19.1± 0.1
th [s] 230.3± 6.6 447.1± 6.4
t0 [s] 468.4± 14.1 400.6± 8.2

h0 [µm] 23.9± 0.1 24.2± 0.1
α 0.67± 0.01 0.41± 0.01
t1 [s] 7.6± 0.2 3.5± 0.3
t2 [s] 635.2± 19.3 925.4± 14.0

β 0.37± 0.02 0.43± 0.01
tγ [s] 4304± 21 4597± 16

Table 4.1: Fitting results of the bridge closure and axis ratio relaxation para-
meters for N. gonorrhoeae microcolonies. The fitting functions are
given in equation 4.4, 4.5 and 4.6.

larger than one hour and thus considerably larger than the bridge clo-
sure time th. The fact that a relaxation time can be defined suggests,
that the colony will finally approach a spherical shape.

Up to now we did not discuss the role of cell divisions during the
bridge closure and the shape relaxation of microcolonies. The divi-
sion time tdiv of N. gonorrhoeae has been shown to be in the order of
2-4 hours for conditions similar to those of our experiments [59, 107]
and thus exceeds the characteristic time of coalescence. Additionally,
when the change of volume of a sphere is given by the time tdiv, the
radius of the same colony follows R ∝ V1/3 and will grow with a cha-
racteristic time 3tdiv, thus being in the order of multiple hours. Such
a time is larger than any other time characterizing the coalescence
dynamics.

In order to understand the reason for the discrepancy between the
time the colony needs to close its bridge (which is in the order of a
few minutes) and the time the late ellipsoidal colony relaxes towards
the spherical shape (which is in the order of hours) we need to study
the internal dynamics of the microcolonies.

4.1.2 Motility of cells within N. gonorrhoeae colonies

To study the dynamics of individual bacteria within microcolonies,
we were tracking those cells and analyzed their motility as a function
of their position within the colony.

We mixed wildtype cells and a small fraction of fluorescently labe-
led cells (around 5-10 %). The cells were labeled with tdtomato and
otherwise exhibit completely similar properties as the wildtype cells.
Then, we allowed the cells to self-assemble into microcolonies and
used a fluorescence microscope to track the cells within the midplane
of the colonies (see appendix B). Next to the fluorescence channel
which allowed us the tracking of the cells, we also recorded the co-
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Figure 4.5: (a) Representation of the detection of fluorescently labeled cells.
The upper image highlights the detection the fluorescently labe-
led cells. The lower image shows the position of individual cells
relative to microcolony. Bar = 10 µm. (b) In order to be able to
reduce the effect of rotations of the microcolonies on the trajec-
tories of single cells, we computed the mean squared relative
distance of cell pairs. Both cells were defined to be a pair if they
could be found in a similar region, defined by their distance from
the surface Rs.

lony on a DIC channel to detect the shape of the colony and to es-
timate the distance of the tracked cells from the colony surface (see
figure 4.5a).

The colonies we were looking at interact, analogous to single cells,
with the substrate due to their pili. Thus, they exhibit motion over
the surface (see chapter 3). This affects the detected trajectories of
the cells. Due to this process, it is not justified to just compute the
mean squared displacement of the cells to quantify their motility (see
section 1.2). Instead, we computed a quantity we call the mean squa-
red relative distance δMSRD, the mean squared displacement of the
scalar distance d of two cells. In appendix G we show that the time
averaged mean squared distance of two particles exhibiting each a
diffusive motion, each with diffusion coefficient D, and having an
absolute distance d is given by

δMSRD(∆t) = 〈[d (t+∆t) − d (t)]2〉t = 4D∆t. (4.7)

It is important to highlight that this quantity is not dependent on the
initial distance of the two cells. The last step needed to estimate the
diffusion coefficient of cells as a function of their distance Rs from the
surface of the colony Rs is to group cells, depending on Rs. Therefore,
we define four regions with increasing distances from the surface (see
figure 4.5b) and only compute the diffusion coefficient of cells within
the same region (see figure 4.6a). We observe that cells on the surface
are highly motile, while cells within the bulk of the colony do not
exhibit any detectable motility. The offset δ0 in the mean squared
relative distance, as seen in figure 4.6a, is originating from tracking
errors [108] and corresponds to displacements in the order of one
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Figure 4.6: δMSRD as a function of time and diffusion coefficient D from the
experimental data as a function of the distance Rs from the sur-
face.

to two pixel (equivalent to 0.13− 0.26 µm). In order to compute the
diffusion coefficients, we fit a function of the form

δMSRD(∆t) = 4D∆t+ δ0 (4.8)

and observe a pronounced gradient of the diffusion coefficient as a
function of the distance from the surface of the colony (see fig. 4.6).
Cells at the surface of the colony exhibit a considerable motility, while
cells within the bulk, specifically being more than one cell size (around
1 µm) away from the colony surface, do not show any measurable
motility.

Thus, our main experimental observation are the gradient of moti-
lity within a colony and the appearance of multiple time scales during
the coalescence of colonies. Now we want to find some rational expla-
nation of these effects and choose our computational model as ideal
tool for investigating these processes.

4.2 modeling microcolony coalescence and internal dy-
namics

We first show that our model (see chapter 2) is able to reproduce the
behavior observed in experiments and summarized in the previous
section and check how it depends on the chosen parameters of the
simulation. Afterwards, we study the motility of cells within the colo-
nies and look for correlating gradients of multiple quantities related
to the properties of the pili network, the structure of the colony or the
involved force fluctuations.

For our simulations, we sampled over a wide range of parameters
to study the coalescence and the internal dynamics of microcolonies
(see table F.3 and F.4). Particularly, we studied the role of the pili-pili-
detachment time td,pp, the detachment force Fd,pp and the attachment
rate γatt,pp. Here, we will only present the dynamics of colonies for
two parameter sets (see table 4.2). The sets are named after the ratio
of their detachment forces Fd,pp and the stalling force Fstall = 180 pN.
For the parameter set called weak, the stalling force is larger than the
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strong weak

Fd,pp [pN] 360 120

td,pp [pN] 50 50

γatt,pp [Hz] 0.5 0.5

Table 4.2: Definition of weak and strong pili-pili-interactions parameter sets.

Figure 4.7: Coalescence of in silico microcolonies for the (a)strong and (b)
weak parameter set. The two initial colonies consist of 1000 cells
each.

detachment force, and the pili are expected to unbind more easily. For
the parameter set called strong, the pili-pili-bonds are stronger.

All other parameters used in our simulations, are given in table 2.1.

4.2.1 Coalescence of in silico colonies

We first apply the computational model (see chapter 2) to study the
coalescence of two, equally sized, colonies that consist of up to 1500

cells each (see figure 4.7). In these simulations, we ignore the inte-
ractions with a substrate. The reason for this simplification is the fact
that in the experiment we use a substrate with reduced interactions.
Additionally, in experiments we observe that colonies have spheri-
cal shapes and are wetting the substrate only weakly. Thus, the pili-
mediated interactions between cells are considerably stronger than
those with the substrate, allowing us this simplification. More infor-
mation how the simulations were initialized and analyzed are given
in appendix F.2.

For the strong parameter set, we observe properties similar to those
observed experimentally. After coalescence, the two colonies only we-
akly mix and they exhibit a sharp interface between the initial colo-
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Figure 4.8: (a) Bridge height during the coalescence of in silico microcolonies
for the weak (red) and the strong (blue) parameter set. Here, data
for the movie shown in figure 4.7 are presented and the fitting
results for t1 and t2. (b) Axis ratio of the short and long axis of
a ellipse fitted to the midplane of two coalescing colonies of N.
gonorrhoeae microcolonies. The time scale of the bride closure is
estimated by an exponential function (see green line and equa-
tion 4.6).
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strong weak

h0 [µm] 12.5± 0.1 13.9± 0.1
th [s] 241.5± 5.5 28.4± 1.2
t0 [s] 103.8± 5.2 4.4± 1.4

h0 [µm] 16.1± 0.1 17.5± 0.1
α 0.30± 0.01 0.13± 0.03
t1 [s] 28± 3 3.6± 6.4
t2 [s] 655.7± 5.2 57.2± 3.0

β 0.50± 0.01 0.55± 0.03
tγ [s] 1514± 88 98.0± 8

Table 4.3: Fitting results of the bridge closure and axis ratio relaxation para-
meters for in silico microcolonies. The fitting functions are given
in equation 4.4, 4.5 and 4.6.

nies (see figure 4.7a). To study the dynamics of the bridge closure,
we fitted, similarly to our analysis of the experiment, the two functi-
ons given in equation 4.4 and equation 4.5 to the bridge height (see
figure 4.8a) and we observe a fast initial time scale t1, corresponding
to the initial approach of the colonies and a slower time scale, t2 or th,
that are the same for both functions and corresponds to the closure of
the bridge (see table 4.3). For the strong parameter set they are, similar
to the experimental results, in the order of minutes. To characterize
the late coalescence towards the spherical shape, we again assume
that the axis ratio of an ellipse, fitted to the midplane of the ellipsoi-
dal colony (similar to figure 4.3), is relaxing exponentially towards 1,
with the characteristic time tγ (see equation 4.6). For the strong pa-
rameter set we observe the same discrepancy of the time scales as
the one observed experimentally (see figure 4.8b), the bridge closure
time is roughly three times smaller than the relaxation time towards
the spherical shape (see table 4.3).

For the weak parameter set we observe that the coalescence takes
place much faster (see figure 4.7b) than the coalescence of the strong
parameter set. The two colonies do mix and do not exhibit a clear in-
terface, as observed experimentally. For the bridge closure, we also
observe two time scales t1, corresponding to the initial approach,
and a second time scale corresponding to the closure, t2 or th (see
figure 4.8a). The times are in the order of one minute, making them
considerably smaller than those of the experiment or the simulations
with strong pili-pili-interactions.

4.2.2 Internal dynamics of in silico colonies

With the help of our computational model, we can study the moti-
lity of individual cells within microcolonies and different quantities
that may affect the behavior of the cells. Analogously to the simu-
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lations of microcolony coalescence (see subsection 4.2.1), we ignore
interactions with a substrate. Again, we only present the results for
two different parameter sets characterizing the pili-pili-interactions,
weak and strong, as defined in table 4.2.

We started with computing the time-averaged mean-squared dis-
placement (MSD)

δMSD(∆t) = 〈[r (t+∆t) − r (t)]2〉t = 6D∆t, (4.9)

of individual cells, where r is the position of the cell in three dimen-
sions and D is its diffusion coefficient. Additionally, we measured
the mean-squared relative distance (MSRD, see equation 4.7 and ap-
pendix G) of cell pairs. The time-dependence of both quantities was
studied as a function of the cell distance from the surface of a microco-
lony. Therefore, cells were grouped in multiple regions, that differ in
their distance from the surface of the in silico microcolony (see appen-
dix F.3 for more details). The MSD exhibits a linear time-dependent
behavior, corresponding to diffusive motion (see figure 4.9a and fi-
gure 4.9b). Additionally, the MSD shows a higher motility of cells
close to the surface of the colony, compared to cells within the colony
bulk for both parameter sets (see figure 4.9a-d).

By computing the MSD and the MSRD it is possible to estimate the
diffusion coefficient D of the cells as a function of their distance from
the colony surface. In both cases, we observe similar results, as can
be seen in figure 4.9e and figure 4.9f.

One can define the characteristic length scale lD of the gradient of
the diffusion coefficient D, by fitting a function of the type

D = D0 +Dr exp
(
l

lD

)
, (4.10)

where D0 is the offset of the diffusion coefficient, Dr is the magnitude
of the gradient and lD is the characteristic length scale of the gradient
of motility. The fitting of this function is visualized in figure 4.9e and
figure 4.9f. The resulting values ofD0,Dr and lD are given in table 4.4.

For the weak parameter set the diffusion offset D0 and the magni-
tude of the gradient Dr are larger than for the strong parameter set,
corresponding to a stronger motility of the cells within and on the
surface of the colony. It appears that the characteristic length scale lD
is independent of the chosen parameter set and in the order of the
size of an individual cell.

In order to study the origins of the gradient of the diffusion coef-
ficient, we studied multiple quantities connected to the dynamics of
the pili. For the number of attached and actively pulling pili of a cell,
we observe a slight decrease close to the surface of the colony, as
shown in figure 4.10a. Additionally, the mean number of pulling pili
is lower for weaker pili-pili-interactions. For the total number of pili
a cell possesses, we do not observe any spatially dependent gradient
within the colony. Instead, the cells possess roughly 15 pili, correspon-
ding to the maximal number Nmax (see section 2.1 and table 2.1). This
is a result of the average life time of the pili (see figure 4.10b), which
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Figure 4.9: Motility of cells within in silico microcolonies for the strong para-
meter set (a,c,e) and the weak parameter set (b,d,f). (a,b) Double-
logarithmic representation of the time-dependent mean-squared
displacement for cells with different distances from the center
of the colony. The MSD exhibits a linear, diffusive, behavior.
The black line gives the slope of a linear function. (c,d) MSD
for both parameter sets, but with linear axes instead of double-
logarithmic ones. (e,f) Diffusion coefficient D of the cells as a
function of their distance from the center of the colony. D was
computed by measuring the MSD (filled circles) and by measu-
ring the MSRD (hollow circles). The gradient can be characteri-
zed by equation 4.10, as shown by the black line, with the cha-
racteristic length scale lD. The vertical lines s show the average
colony size Rcol, estimated by the cell number density (equa-
tion 4.11).
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Figure 4.10: Internal dynamics of in silico microcolonies. Here, the red data
highlights the weak parameter set and the blue data the strong
parameter set. The vertical lines that can be seen in most plots
show the average colony size Rcol, estimated by the cell num-
ber density (equation 4.11). (a) Mean of the number of all pili
(hollow circles), and of the pili which generate a pulling force
on cells as a function of dcom. (b) Mean life time of the pili of
cells within a microcolony. (c) Variance of the number of acti-
vely pulling pili as a function of the distance of the cells from
the colony center dcom. (d) Cell number density of cells within
a colony. The lines highlight a fit with the function 4.11. (e) Ne-
matic order parameter S (see equation 4.12) of the cell main axis
relative to the vector pointing from the center of the colony to
the center of the cell as a function of the distance from the cen-
ter of the colony dcom. (f) Pair correlation function g(r) of bulk
cells as a function of the distance r between the cells. The graph
agrees for both parameter sets. (g,h) Variance of the absolute va-
lues of the tangential force Ft and the normal net force Fn acting
on a cell relative to the surface of the colony.
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strong weak

D0 [µm2/s] (6.64± 0.95)× 10−5 (1.97± 0.46)× 10−3

Dr [µm2/s] (1.97± 2.31)× 10−7 (5.7± 15.3)× 10−6

lD [µm] 0.98± 0.19 1.07± 0.38

ρ0[µm−3] 0.80± 0.03 0.74± 0.03
Rcol [µm] 7.97± 0.02 8.19± 0.02
ω [µm] 0.18± 0.03 0.40± 0.02

Table 4.4: Parameters characterizing the internal dynamics of in silico micro-
colonies.

is for both parameter sets much larger than the time corresponding to
the pili production rate of 15 Hz (see table 2.1). Not surprisingly, for
the weak pili-pili-interactions, the average life time is smaller than the
life times for the strong interactions. We observe a pronounced gra-
dient of life times. Pili on the surface possess a considerably smaller
life time, compared to pili within the bulk of the colony.

Next to the spatially dependent number of pili and their life time,
we can also measure the fluctuations of the number of actively pulling
pili that a cell has as a function of the position of the cell within the
colony. We observe a weak increase of the standard deviation of the
pili number near the surface for the weak and the strong parameter set
(see figure 4.10c).

Besides the dynamics of the pili network, we were also studying
the structure of the colony and the arrangement of the cells. An im-
portant measure to characterize the structure is the density ρ of cells
(see figure 4.10d). We can compare its profile to the density profile
of liquid–liquid or liquid–vapor interfaces [109–111], which has the
form

ρ(dcom) =
ρ0
2

(
1− tanh

[
dcom − Rcol

ω

])
, (4.11)

with dcom being the distance from the center of the colony, ω the
width of the density profile and ρ0 the density within the colony
bulk. For the strong parameter set, the colony possesses a slightly
smaller radius and a slightly higher density (see table 4.4), compared
to weak pili-pili-interactions for the same number of cells in the colony.
Additionally, stronger interactions reduce the width of the interface.
The higher density may reduce the motility of cells in the colony and
thus contribute to the observed gradient of motility by reducing the
available volume for motion and by introducing jamming effects.

For the strong interactions, we observe a pronounced peak of the
cell density near the surface of the microcolonies which originates
from the nematic order of the diplococcus-shaped cells close to the
colony surface (see figure 4.10e). The nematic order parameter was
determined by computing the angle α between the axis connecting
the two cocci of a cell and the vector pointing from the center of the
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colony to the center of the cell. Then, the nematic order parameter
S [112] is defined to be

S =

〈
3 cos2 α− 1

2

〉
. (4.12)

Within the microcolonies, the cells possess an overall random distri-
bution of their directions, which corresponds to a nematic order pa-
rameter S close to 0. At the surface of the colonies, we observe a
bias towards a tangential orientation of cells with S < 0 and that may
cause the peak of the spatially dependent cell density ρ.

In order to learn more about the arrangement of cells within the
colonies, we were computing the pair-correlation function g(r) [113]
of the bulk cells (see appendix F.3 for more information). We observe
an almost identical shape of the pair correlation function for the two
parameter sets with correlations only reaching up to 3–4 µm, corre-
sponding roughly to distance to the centers of the next neighbors and
pointing towards more fluid-like properties of colonies [110].

The pili forces are directly translated into the motion of cells. Here,
we computed the absolute values of the normal and tangential com-
ponents of the sum of the pili-mediated and the excluded volume
forces, relative to the vector pointing from the center of the colony
to the center of the cell. Then, we computed the square root of the
variance (see figure 4.10g and figure 4.10h). In both cases and for
both parameter sets we observe an increase of the force fluctuations
near the surface of the colonies, which is translated into the higher
motility of the cells. Additionally, for strong pili-pili-interactions the
force fluctuations are smaller than for weak interactions. This is a con-
sequence of the shorter pili life times and the resulting more frequent
rearrangement of the pili network.

4.3 differences between experiment and simulation

We need to discuss a discrepancy between our simulations and the
experimental results. While the simulations for the strong parameter
set exhibit qualitative similarities for the coalescence dynamics to the
experimental data, the observed gradient of motility predicts values
for the diffusion coefficient which are one order of magnitude lower
than those observed experimentally (see figure 4.6 and 4.9). However,
the gradient of the diffusion coefficients exhibits similar properties
for the weak parameter set. For this parameter set the complete coa-
lescence dynamics have time scales of a few minutes or less, which
are considerably smaller to those observed in the experiment (see fi-
gure 4.4 and figure 4.8). We suggest that this behavior originates from
the fact that the pili network within a colony is more complex than
described by our computational model. While pili within a bacterial
colony form dense networks where multiple pili can interact with
each other, in our simulation we consider binary interactions only.
While the pili of cells on the surface form less bonds to other pili and
are thus less efficiently embedded into the pili network within our
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Figure 4.11: Sketch of the layer-bulk model and how it affects the coales-
cence of microcolonies. The cells within the bulk region of the
colony (gray) possess a weak motility only, cells at the outer
layer of the colony (yellow) are weakly packed and highly mo-
tile. The shown image represents an idealization of two distinct
regions. In our experiments and simulations, the motility is cha-
racterized by a gradient (see subsections 4.1.2 and 4.2.2).

simulation, cells within the bulk of the colony are tightly embedded
into the network and exhibit a considerably weaker motility.

After showing that our computational model can reproduce our ex-
periments qualitatively and allows us to learn more about the proper-
ties of the pili network and the involved forces within a microcolony,
we will now discuss the connection between the observed gradient of
motility and the peculiar behavior of the colony coalescence.

4.4 the layer-bulk model and its origin

During the coalescence of microcolonies, the colonies initially appro-
ach each other within seconds, followed by the closure of the bridge
(with a time scale in the order minutes) and finally followed by the
relaxation from an ellipsoidal towards a spherical shape with a time
scale on the order of one hour or more.

We suggest that these dynamics are mediated by the gradient of
motility, where a colony possesses an outer layer of highly motile
cells and an inner bulk consisting of cells that exhibit a weak motility
only.

How such a gradient can mediate the observed dynamics of colony
coalescence is visualized in figure 4.11. Initially, both colonies attract
each other due to pili-pili-interactions and will collide within seconds.
This approach continues until the outer layer regions intersect and the
bulk regions of both colonies touch. Then, the two colonies are no lon-
ger able to continue the fast approach. Cells at the outer layer move
towards the intermediate region of the dumb-bell shaped colony and
close the bridge, so that the bridge closes and the colonies reaches
a more ellipsoidal shape. The time scale of this process is in the or-
der of minutes. This appears reasonable, because our measurements
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of the MSRD and the MSD show that cells of the outer layer move
over distances in the order of 1 µm within 1-2 minutes. In order to
close the bridge of a colony having a diameter of 20 µm, they need to
move a comparable distance. Finally, the resulting ellipsoidal colony
relaxes towards a spherical shape. This process is no longer governed
by the dynamics of the outer layer, but by the properties of the bulk.
Due to the weak motility of the cells within the bulk, which possess
a diffusion coefficient that is at least one order of magnitude smaller
than those for the surface cells, the characteristic time scale for this
process is in the order of one hour for colonies having a diameter
of roughly 20 µm. In the next chapter we show how the size of the
colonies affects the discussed time scales.

In order to study the origin of the gradient of motility within a co-
lony, responsible for the coalescence dynamics, we studied multiple
quantities from our computational model that are, to the present day,
not accessible experimentally (see figure 4.10). While these quantities
allow us to learn more about the origin of the gradient of motility,
it remains to be unraveled what the general properties of the bulk
regions are, more specifically if the bulk exhibits more fluid-like or
more solid-like properties. From the measurement of the MSD and
the MSRD we found that for large times of ∆t = 100 s cells exhibit a
diffusive motion. For the pair-correlation function of cells within in
silico microcolonies we observe only correlations for direct neighbors,
pointing towards fluid-like behavior. By calculating the nematic order
parameter of the cells, we observe a lack of order of the cells which
does also points towards a fluid-like behavior of the bulks. Another
observation which points towards more fluid-like properties is the
fact that we can define a time scale of the relaxation of ellipsoidal
colonies towards a spherical shape, which is reminiscent of the coa-
lescence of liquid droplets and their relaxation towards a spherical
drop. We do not observe an arrest of the coalescence. Thus, we sug-
gest that a bacterial microcolony exhibits fluid-like properties with a
gradient of motility of the individual cells within the colony.

To estimate whether a chemical gradient of nutrients, oxygen or
waste metabolic products is involved the formation of the gradient of
motility, we estimate the effective diffusion coefficient of these mo-
lecules within a colony. Therefore, we assume that a microcolony
has properties of a porous medium. From the dependence of the co-
lony radius from the number of cells (see appendix F.3.2) and the
volume of the single cells we could estimate the volume fraction
φ = 0.65− 0.7. The effective diffusion coefficient Deff of a solute in
a porous medium with such a volume fraction is estimated by

Deff = Daq
1−φ

1− 1
2 ln(1−φ)

, (4.13)

as shown in [114]. Here, Daq is the diffusion coefficient of the solute
in water. For bacterial microcolonies we then find

Deff = 0.18− 0.23 Daq. (4.14)
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The diffusion coefficient of a wide range of different solutes associa-
ted with biofilms, for example oxygen, glucose or urea, were found
to follow Daq > 100 µm2/s [115]. Thus, the lower limit of the effective
diffusion coefficient within a microcolony is given byDeff > 18 µm2/s.
From the mean squared displacement

∆r2 = 6Deff∆t (4.15)

we find for the length corresponding to the characteristic colony size
∆r = 15 µm the time ∆t = 2.1 s. Within only a few seconds nutrients,
oxygen or waste metabolic products are able to diffuse out of or into
the colony. Thus, we exclude chemical gradients as origin of the ob-
served gradient of motility.

4.5 colony size dependent coalescence

We can use the computational model (see chapter 2) to predict how
the size of the coalescing colonies affect the involved time scales. Here,
we only investigate the strong parameter set and study cases in which
the initial colonies were consisting of 50 to 1500 cells each.

By computing the bridge height and the axis ratio of the ellipse
fitted to the midplane of the colonies we were able to estimate the
involved time scales.

By plotting the time scales tγ as a function of the number of cells
within the colony N, we found that tγ ∝ N2/3 (see figure 4.12a and fi-
gure 4.12b). The radius R of the colony scales with the colony volume
N ∝ R3, so that tγ ∝ R2, the relaxation time is proportional to the
surface of the colonies. We can use this scaling to study the behavior
of the bridge closure for colonies of varying size (see figure 4.12c).
By estimating the final size of the colonies after relaxation h∞ (see
appendix F.3.2), we could rescale the final height of the colony. Addi-
tionally, we were rescaling the time of the closure of the bridge with
the relaxation time tγ. By rescaling these two quantities, we observe
a collapse of the time-dependent bridge height on a single master
curve. Thus, the bridge closure time th is proportional to the surface
of the colonies,

th ∝ R2. (4.16)

For liquid droplets the time scale of bridge closure scales with the
colony radius [104, 116] ,

th ∝ R. (4.17)

Such a relation was also found to explain the fusion of cellular ag-
gregates [106, 117, 118]. For bacteria, it appears that such models of
viscous liquid droplet coalescence are not able to explain the coales-
cence of N. gonorrhoeae microcolonies.

We suggest that this behavior originates from the gradient of moti-
lity within the microcolonies. Additionally, the colonies may possess
viscoelastic properties. In this case, the scaling of droplets of different
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Figure 4.12: [Colony-size dependent coalescence of in silico microcolonies.
(a) Ratio of short and long axis γ for colonies consisting of dif-
ferent numbers of cells as a function of time. Here, we assume
that 1− γ can be described by equation 4.6, which allows us
to compute the relaxation time tγ. (b) Colony shape relaxation
time tγ as a function of the number of cells in the colony. It fol-
lows tγ ∝ N2/3 (red line). The green line corresponds to tγ ∝ R,
the blue line to tγ ∝ R3. (c) Bridge height as a function of time
for different cell numbers of the initial two of colonies. (d) Res-
caling of the bridge height with the final colony radius, h∞ (see
figure F.2a), and of the time with the relaxation time tγ ∝ R2. In
this case, the curves collapse.
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sizes can differ from the previous predictions [119–121] and show
a more complex behavior, that for example depend on the material
properties.

4.6 summary

In this chapter we studied the dynamics of pili-mediated microco-
lony fusion and how the internal dynamics of the colonies can af-
fect the coalescence. Our experiments and simulations suggest that,
while the colonies exhibit fluid-like behavior locally, the resulting ag-
gregates exhibit a more complex behavior. Particularly, we observe a
gradient of motility where cells near the colony surface are more mo-
tile than cells in the bulk. Additionally, the size-dependent scaling of
the colonies cannot be explained by simple models of liquid droplet
coalescence.

In order to study the internal properties more detailed in the future
and to find clear evidence whether bacterial colonies exhibit fluid-like
behavior, it is necessary to study its rheological properties with the
help of experiments and simulations [122, 123] . Such experiments
will help to study the role of the viscoelastic properties of the cells and
colonies and the adaptation of colonies and their internal dynamics
towards different mechanical cues.

After studying the dynamics of colonies consisting of only one po-
pulation of cells with similar properties, in the following chapter we
will study the behavior of colonies of different cell populations with
altered properties of their pili dynamics.
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5
D E M I X I N G O F B A C T E R I A L M I C R O C O L O N I E S

In the previous chapter, we studied the motion of individual cells
within bacterial aggregates and how they drive the coalescence of
microcolonies. Pili-mediated forces play a fundamental role in the
dynamics of microcolonies.

Here, we will study how the dynamics of colonies are altered after
manipulating the pili-mediated forces. In experiments we see that
within minutes microcolonies, consisting of not just one type of cells
but of cells with pili having different properties, are capable of mixing
or demixing. We will present and discuss previously published and
new experiments and compare the outcome of these experiments to
our computational model. The resulting behavior exhibits qualitative
similarities to the differential adhesion hypothesis.

Our results concerning mixtures of ∆pilT (cells that are not capable
to retract their pili) and wildtype cells were previously published [60,
124].

5.1 demixing of wildtype and mutant bacteria

Oldewurtel et al. [57] have extensively investigated the cell sorting
of mixtures of wildtype cells and different mutants (see figure 5.1).
In their experiments, two cell populations were labeled fluorescently.
They started with individual cells of the two populations on top of
a glass surface and analyzed the structure of the microcolonies af-
ter 3-5 hours of assembly. We will start with discussing mixtures of
cells that, besides of their fluorescent labeling, have the same proper-
ties as wildtype cells of Neisseria gonorrhoeae. Here, we refer to those
cells as ”wildtype cells”. For such mixtures, uniform mixing of the
cell populations within the colony was observed (see figure 5.1a) [57,
124]. For a mixture of wildtype cells and mutant cells that do not
possess pili, called ∆pilE, the wildtype cells form microcolonies. The
mutant cells are not able to move on the substrate or to interact with
each other, thus they are not incorporated within any microcolonies
(see figure 5.1b). Additionally, it was possible to study the mixture of
wildtype cells and hyperpiliated cells, having a higher mean number
of pili. The hyperpiliation was realized by using strains with three
copies of the pilE gene. In this case, the cells with the lower number
of pili formed the outer shell of the microcolonies, the mutant cells
were found within the bulk. By post-translational modification of the
major subunit of the pili, Oldewurtel et al. were able to create mu-
tants with altered pili-pili detachment forces. They were able to show
that for those mutants, the detachment forces of wildtype-wildtype
and mutant-mutant pili bonds were considerably higher than those of
wildtype-mutant bonds. In this case, the wildtype and mutant cells
each form colonies on their own. While these colonies can also in-
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Figure 5.1: Confocal microscopy images of mixing and demixing of different
types of Neisseria gonorrhoeae cells. The figure was taken from [57].
(a) Mixture of two differently labeled populations of wildtype
cells. (b) Mixture of wildtype cells (red) and mutant cells without
any pili (green). (c) Mix of wildtype cells (green) and hyperpili-
ated cells (red), possessing a higher mean number of pili. (d)
Mixture of wildtype cells (red) and cells with altered pili-pili in-
teractions (green). The individual cell populations form distinct
colonies that are also able to interact with each other.
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teract with each other and form larger colonies, from figure 5.1d it
becomes clear that the cells prefer to be close to cells of the same
kind.

Next to reporting about the the work of Oldewurtel et al. [57], we
also studied the mixture of wildtype cells of Neisseria gonorrhoeae and
mutant cells with ∆pilT mutants after three hours of assembly. The
presented experimental data was contributed by Prof. Nicolas Biais
(Brooklyn College, New York, USA). While the ∆pilT mutant cells
are able to create pili which are able to protrude from the cell mem-
brane and bind to other pili, they are no longer able to retract and the
cells are not able to actively create forces on their own. For these cells,
we do not observe motion on a substrate. For the mixture of wild-
type cells and the ∆pilT mutants we observe that the mutant cells
are concentrated at the outer shell of the colonies, while the wildtype
cells are found within the bulk of the colonies (see figure 5.2b). In
order to quantify this behavior, we measured the intensity profile of
the two fluorescently labeled cell populations, giving us quantitative
evidence of demixing (see figure 5.2d). In a agreement with the expe-
riments of Oldewurtel et al. [57], we observed uniform mixing of two
differently labeled populations of wildtype cells (see figure 5.2a and
5.2c). Details of the labeling of these cells are given in appendix B.

5.2 application of the computational model to study

colony demixing

Now, we want to apply the computational model, introduced in chap-
ter 2, to investigate the sorting dynamics for mixtures of different cell
populations. The parameters used for our simulations are given in
table 2.1.

If not stated otherwise, we pick for the pili-substrate interactions a
detachment force Fd,ps = 180 pN, a detachment time td,ps = 10 s and
an attachment rate γatt = 0.5 Hz. This corresponds to the slow para-
meter set, defined in table 3.1. For the pili-pili-interactions we set
the detachment force Fd,pp = 360 pN, the detachment time td,ps = 50 s
and the attachment rate γatt,pp = 0.5 Hz, corresponding to the strong
parameter set of table 4.2. Here, we are not interested in a direct repro-
duction of experimental data, but we want to investigate whether, for
given cell-cell-interactions, similar mechanisms lead to comparable
internal structures of microcolonies . Thus, the parameters describing
the pili-pili- and pili-substrate interactions may differ from the values
expected experimentally.

For wildtype cells, we found that colonies form within one hour
and remain stable after formation, as can be seen in figure 5.5a.

Next, we simulated a 50:50 mixture of WT and ∆pilT mutant cells.
For ∆pilT mutant cells, the pilus retraction velocity was set vret = 0.
In figure 5.3b we show the initial state and the microcolonies that for-
med after one hour. We observe a behavior that agrees with experi-
mental results: while the mutant cells are concentrated at the surface
of the colonies, the wildtype cells are mainly found in the bulk of

[ April 9, 2018 at 11:33 – classicthesis version 4.2 ]



72 demixing of bacterial microcolonies

Figure 5.2: Demixing of a mixture of wildtype cells and a ∆pilT mutant
of Neisseria gonorrhoeae. The figure was adapted from [124]. (a)
DIC (differential interference contrast microscopy) and fluores-
cence images allowed to detect the positions of two populations
of WT cells. Here, green represents labeling with YFP, and red
represents tdtomato labeling. (b) DIC and fluorescence images
allowed to detect the positions of a colony formed from wild-
type cells (labeled with YFP) and ∆pilT mutants (labeled with
mcherry). The mutant cells are concentrated at the edge of the
colonies. (c,d) We quantify the intensity profile along the red li-
nes in (a,b). The intensity is assumed to be directly proportional
to the concentration of the cells. For a mixture of two wildtype
populations we do not see any demixing, for a mixture of wild-
type cells and ∆pilT mutants, the demixing is observed.
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Figure 5.3: Top view of the assembly of in silico microcolonies of wildtype
cells and ∆pilT mutant cells. The figure was adapted from [60].
(a) Assembly of 1200 cells on a substrate. After initializing cells
homogeneously on the substrate (left), colonies begin to form af-
ter a few minutes. They grow by single cells colliding with the
less motile colonies. After one hour, almost all cells are assem-
bled into colonies. (b) Mixture of normal cells (green) and ∆pilT
mutants (red). These mutants have pili which cannot pull. The
colonies form within one hour. The inset depicts a close-up in of
a typical colony and shows that the mutant cells accumulate at
the surface of the colony.
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Figure 5.4: Ratio of surface and bulk cells for in silico wild-type and ∆pilT
cells. If a cell is part of the colony surface or bulk was estimated
by computing the alpha shape of the cells. The figure was adap-
ted from [60]. (a) Ratio of wild-type (WT) cells at the surface
(orange) and inside of the colony (yellow). The colonies form
such that within 10 minutes (600 s), the wild-type cells can be
found preferentially inside of the colonies. (b) Ratio of mutant
cells identified as surface (orange) and bulk (yellow) cells. A lar-
ger fraction of ∆pilT mutants can be found on the surface of the
colonies.

the colonies. We could also quantify this behavior by directly iden-
tifying which cells are surface cells of a colony and which cells can
be found within the bulk of the colony. We determined surface cells
by computing the alpha shape of the in silico microcolony [125, 126]
(alpha radius Rα = 1 µm). More information about how the alpha
shape helps us to identify surface cells and technical details are gi-
ven in appendix F.4. For the wildtype cells and the mutant cells we
computed the fraction of cells that belong to the colony surface and
the fraction that belongs to the bulk (see figure 5.4). We observe that
wildtype cells are preferentially located in the bulk of colonies, the
∆pilT mutant cells are located at the surface of the colonies.

Next to the demixing of wildtype cells and ∆pilT mutants, we
could also simulate the demixing dynamics for the cell populations
investigated by Oldewurtel et al. [57] (see figure 5.1). Similarly to
the experiment, in the simulations we do not observe any demixing
of two populations of wildtype cells (see figure 5.5a). When we mix
wildtype cells and cells without any pili, we observe that the cells
with pili form microcolonies. Cells without pili are not able to move
or to interact via pili. Thus, they are not incorporated into microco-
lonies (see figure 5.5b). In order to simulate the mixture of two cell

[ April 9, 2018 at 11:33 – classicthesis version 4.2 ]



5.2 application of the computational model to study demixing 75

Figure 5.5: Top view of the mixing and demixing of different types of in si-
lico cells, simulated from the computational model. Here, we try
to mimic the midplane of the colonies by only showing cells that
have a maximal distance of 6 µm from the substrate. (a) Mix-
ture of two differently labeled populations of normal cells. (b)
Mixture of normal cells (red) and mutant cells without any pili
(green). (c) Mix of normal cells (green) and cells with an increa-
sed mean pili number (red). (d) Mixture of normal cells (red) and
cells with altered pili-pili interactions (green). Similar to the ex-
periment, the individual cell populations form distinct colonies.
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population with different number of pili, we changed the maximal
number of pili Nmax a cell possesses and the pilus production rate
γprod of pili. For the first cell population, these parameters where
chosen to be Nmax = 15 and γprod = 15 Hz (equivalent to table 2.1).
For the second population, we chose Nmax = 25 and γprod = 25 Hz.
We observe, that the cells with less pili are located at the surface of
colonies, the cells with a higher number of pili are preferentially lo-
cated within the bulk (see figure 5.5c). Analogously to our analysis
of a mixture of ∆pilT cells and wildtype cells, we could verify the
demixing by identifying surface and bulk cells with the help of the
alpha shape of the cells.

The last case we considered is the mixture of cells with different
pili-pili binding properties. Therefore, we defined two populations a
and b and redefined the pilus-pilus detachment forces Fd,pp in the fol-

lowing way: F(aa)
det,pp = 360 pN, F(ab)

det,pp = 180 pN and F
(bb)
det,pp = 540 pN.

We observe that each cell population creates distinct microcolonies.
The chosen values were motivated by experimental results [57]. These
colonies are also able to attract each other and will form larger aggre-
gates (see figure 5.5d).

5.3 bacterial cell sorting and the differential adhe-
sion hypothesis

In 1955 Townes and Holtfreter published a study describing the spon-
taneous self-organization of dissociated amphibian cells in vitro, for-
ming structures that were identical to those known from in vivo mea-
surements [127]. Eight years later, Steinberg was able to explain this
behavior with the so called ”differential adhesion hypothesis” [128,
129].

In the ”differential adhesion hypothesis” it is assumed that cells
have properties comparable to liquids. Similarly to a water droplet
consisting of a high number of mobile molecules, a tissue consists
of a high number of moving cells. If one mixes different populati-
ons of cells, possessing different mechanical and adhesive properties,
the cells tend to rearrange such that they are able to maximize the
relative bonding energies between the interfaces of the cells. Depen-
dent on the specific properties of the cells, one can observe mixing or
demixing of the cell populations [129].

Such a behavior has also been observed experimentally for micro-
colonies of Neisseria gonorrhoeae [57] (see figure 5.1). With the help of
our computational model, we were able to reproduce the experimen-
tally observed behavior for mixtures of two populations of bacteria
with different properties of their pilus machinery (see section 5.2).

The fact that the ”differential adhesion hypothesis” is able to ex-
plain the mixing behavior of different bacteria populations is to be
expected, because the hypothesis it is based on very general princi-
ples of demixing of fluids. Surprising is the observation that such a
behavior for mixtures of wildtype cells and mutants can be genera-
ted without directly altering the adhesive properties of the cells and
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their pili. For the ∆pilT mutant we observe demixing of cells in ex-
periments (see figure 5.2) and in our simulations (see figure 5.3). For
those cells, the direct interactions of the pili of the two cell popu-
lations are identical, but the force generation of the mutant cells is
malfunctioning. Thus, we observe demixing of cells within bacterial
aggregates due to alterations of the active force generation, instead of
differences in the passive adhesive properties.

5.4 summary

In this chapter, we studied the demixing of two cell populations of
Neisseria gonorrhoeae for mixtures of wildtype cells and different types
of mutants. The observed behavior agrees with general predictions of
the ”differential adhesion hypothesis”. Differences in the adhesive
properties of the cells can cause demixing of the populations. We
were able to identify a new mechanism of demixing, which is not
based on the passive adhesive properties, but differences in the active
force generation.

After studying how differences in the force generation of pili in
bacteria can lead to demixing of microcolonies, in the next chapter
we will study the dynamics of the formation of microcolonies from
single cells.
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6
S E L F - A S S E M B LY O F M I C R O C O L O N I E S

In the previous chapters we studied how bacterial cells and colonies
move on a substrate (see chapter 3) and how two smaller colonies
coalesce to form a larger colony (see chapter 4). Now, we study how
these processes mediate the self-assembly of Neisseria gonorrhoeae mi-
crocolonies.

We investigate how aggregation, proliferation and fragmentation
drive colony formation experimentally and with the help of a mas-
ter equation, describing how the colony size density behaves as a
function of time.

6.1 aggregation of colonies in the experiment

To study how colonies form, we investigate how individual cells as-
semble to microcolonies on a glass substrate by computing the time-
dependence of the size distribution of aggregates.

The data was contributed by Nicolas Biais (Brooklyn College, New
York) and analyzed previously in the group of Vasily Zaburdaev (Max
Planck Institute for the Physics of Complex Systems, Dresden, Ger-
many). It consist of binary images of the detected edges of bacterial
aggregates that were forming on top of the substrate (see figure 6.1a
and 6.1b). In total 20 movies of colony assembly, each of a duration
of 189 minutes, were analyzed.

In the experimental data we observe that a fraction of individual
cells and small aggregates were not moving during the complete du-
ration of the movie. The cells are immobile either due to the lack of
pili or due to the lack of the ability to retract them. In order to estimate
the number of cells that do not move, we sum up all binary images
of each movie and threshold this image (details in appendix E.4). An
example for the resulting binary image is shown in figure 6.1c. These
images later allowed us to estimate the properties of the non-moving
aggregates.

From the binary images of the aggregates, we can estimate their
areas A. From the area, we can estimate the number of cells N in
the aggregates by assuming that the number is proportional to the
volume V ∝ R3 of a sphere of radius R with the same projected area
as the one measured,

N ∝ R3 ∝ A
3
2 . (6.1)

We take the proportionally coefficient computed from our compu-
tational model (see appendix F.3.2) as direct input to compute the
number from the area of aggregates, given by

N = 2.92
R3

µm3
= 2.92

(
A

π µm2

) 3
2

. (6.2)
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Figure 6.1: Binary images of colony assembly on a substrate at time (a)
t = 0 min and (b) t = 180 min. Additionally, in figure (c) we
show the binary image of the fraction of aggregates that were
not moving during the experiment.
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Figure 6.2: Surface density of colonies of different sizes. (a) Densities at
two time points t = 0 min and t = 180 min. (b) Densities of non-
moving aggregates. (c) Densities of moving aggregates for two
times t = 0 min and t = 180 min. (d) Zeroth moment of the den-
sity of colonies, corresponding to the number of aggregates. (e)
First moment of the densities of colonies, corresponding to the to-
tal number of cells. The black line describes exponential growth
(see equation 6.4). (f) Second moment of the densities of colonies,
corresponding to the with of the distribution.

We then compute the density of aggregates as a function of the num-
bers of cells within the aggregate, called c(N, t) with the cell number
N and the time t. To be more specific, the colony size density c(N, t)
is defined as the function describing the number of colonies consis-
ting of N cells at time t, divided by the area of the substrate in which
the colonies can be found.

The resulting densities of the initial state of the experiment and af-
ter three hours are shown in figure 6.2a, details of the computation
are given in appendix F.4. We can also compute the density of the
colony sizes for the fraction of aggregates which do not move during
the experiment (see figure 6.2b). The difference between these two
densities gives us the density of aggregates that are moving on a sub-
strate, shown in figure 6.2c. As one can see, due to the subtraction
of aggregates that were not moving, the difference of the density of
smaller aggregates changes considerably over time. For long times, it
appears that smaller colonies become less likely, probably by incorpo-
rating them into larger microcolonies and due to cell divisions.

To quantify the time-dependent behavior of the density c of moving
cells and colonies, we calculated the moments

Mi(t) =

∞∑
N=1

Nic(N, t), (6.3)

where i is the order of the moment,N is the number of cells within the
aggregate and t is the time. In figure 6.2d one can see that the zeroth
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moment M0 is decreasing with time. This results from the aggrega-
tion of colonies due to which two cells or colonies form one larger
aggregate. The first moment M1, shown in figure 6.2e, corresponds
to the full number of cells, divided by the area of the substrate. Due
to cell divisions, this number will increase exponentially. By fitting an
exponential function of the form

M1(t) =M
(0)
1 exp

(
t

tdiv

)
(6.4)

we can estimate the initial density of cells and colonies,

M
(0)
1 = (0.04± 0.01) µm−2, (6.5)

and the cell division time

tdiv = (261± 60) min. (6.6)

This time is in the same order of magnitude as reported in the litera-
ture [107]. The second momentM2, shown in figure 6.2f, corresponds
to the width of the distribution and is increasing with time.

In the next section, we study these experimental observations with
the help of the master equation of the colony size density and we
show that aggregation of colonies is the central driving mechanism
of the observed behavior of the colony size density and its moments.

6.2 theoretical description of colony formation

We now define a master equation, characterizing the temporal dyna-
mics of the density c(N, t), which, as defined in the previous section,
is the number of colonies consisting of N cells at time t, divided by
the area of the substrate. Such an approach has been extensively dis-
cussed in the literature, for example [130].

Our model is based on the following assumptions:

• The system is translationally invariant, allowing us to use c(N, t)
instead of c(r,N, t) with the spatial coordinate r.

• We only consider binary interactions of colonies. Higher order
interactions will be ignored.

• The colony interactions are independent of their shape. For sim-
plicity, we assume that all colonies have a spherical shape.

The master equation has the general form:

dc(N, t)
dt

= C(N, t) +A(N, t) + F(N, t), (6.7)

where C(N, t) denotes proliferation, A(N, t) aggregation and F(N, t)
fragmentation of colonies (see 6.3).
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Figure 6.3: Sketch of the mechanisms that drive microcolony growth. (a)
With the rate γdivi = i/tdiv a colony of size i grows due to the
division of one cell within the colony. (b) Colonies of size i and
j merge irreversibly to a colony of size i+ j with the rate Kij. (c)
Fragmentation of a colony due to the separation of a single cell
with the rate F0.

Cell division

We assume that each cell divides with the rate γdiv. Then, the rate
for which a colony, consisting of i cells, switches states {i}→ {i+ 1} is
given by iγdiv (see figure 6.3a). This transition rate can be derived by
considering the probability density function of the cell division time
of a single cell, given by

p(t) = γdiv exp (−tγdiv) . (6.8)

The probability that the division takes place after a time larger than
a value t ′ is given by

P(t ′) =

∫∞
t ′

dt p(t) (6.9)

= exp
(
−t ′γdiv

)
. (6.10)

For i cells, the probability that none of the cells divide after time t ′ is
given by

Pi(t
′) = P(t ′)i. (6.11)

Finally, the probability density function of times that any cell will
divide is then given by

pi(t
′) = −Ṗi(t

′) (6.12)

= γdivi exp
(
−t ′γdivi

)
, (6.13)

such that the rate of the transition is given by iγdiv.
The contribution of cell divisions to the master equation takes the

form

C(N, t) = c(N− 1, t)(N− 1)γdiv − c(N, t)Nγdiv. (6.14)

Here, the first term is the gain term, corresponding to the transi-
tion {N− 1}→ {N}. The second term is the loss term, describing the
transition {N}→ {N+ 1}.
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For the initial condition c(N, 0) = c0δ(N− 1) with the delta function
δ(x), we can write down the first three differential equations

dc(1, t)
dt

= −c(1, t)γdiv, (6.15)

dc(2, t)
dt

= c(1, t)γdiv − c(2, t)2γdiv, (6.16)

dc(3, t)
dt

= c(2, t)2γdiv − c(3, t)3γdiv (6.17)

and solve them

c(1, t) = c0 exp (−γdivt) , (6.18)

c(2, t) = c0 exp (−γdivt) [1− exp (−γdivt)] , (6.19)

c(3, t) = c0 exp (−γdivt) [1− 2 exp (−γdivt) + exp (−2γdivt)] ,
(6.20)

suggesting the general solution

c(N, t) = c0 exp (−γdivt) [1− exp (−γdivt)]
N−1 (6.21)

that also fulfills the system of differential equations. For this solution
we see that

c(N) > c(N+ 1), (6.22)

so that, for the initial condition c(N, 0) = c0δ(N− 1), the maximum
of the distribution is located at N = 1, independent of time.

It is also interesting to the study the first moments of the colony
number density for cells that are only able to divide. The dynamics
of such a system can be described by the master equation

dc(N, t)
dt

= C(N, t). (6.23)

The zeroth moment M0 (see equation 6.3), corresponding to the
number of aggregates divided by the area, then follows from

dM0

dt
=

∞∑
N=1

dc(N, t)
dt

=

∞∑
N=1

c(N− 1, t)(N− 1)γdiv −

∞∑
N=1

c(N, t)Nγdiv

=

∞∑
N=1

c(N, t)Nγdiv −

∞∑
N=1

c(N, t)Nγdiv

= 0. (6.24)

Thus, we see that M0 is constant and the number of aggregates is
conserved. This is a result of the proliferation, where we assume that
no individual colonies or cells are getting created or destroyed.
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The first moment, corresponding to the total number of all cells
within the colonies per unit area is given by

dM1

dt
=

∞∑
N=1

N
dc(N, t)

dt

=

∞∑
N=1

c(N− 1, t)N(N− 1)γdiv −

∞∑
N=1

c(N, t)N2γdiv

=

∞∑
N=1

c(N, t)(N+ 1)Nγdiv −

∞∑
N=1

c(N, t)N2γdiv

=

∞∑
N=1

Nc(N, t)γdiv

= γdivM1. (6.25)

The solution of this equation is given by

M1(t) =M
(0)
1 exp (γdivt) , (6.26)

M1(0) =M
(0)
1 . (6.27)

Thus, the number of cells in the system increases exponentially with
the rate γdiv, as expected for bacterial growth.

For the second moment we get

dM2

dt
=

∞∑
N=1

N2
dc(N, t)

dt

=

∞∑
N=1

c(N− 1, t)N2(N− 1)γdiv −

∞∑
N=1

c(N, t)N3γdiv

=

∞∑
N=1

c(N, t)(N+ 1)2Nγdiv −

∞∑
N=1

c(N, t)N3γdiv

=

∞∑
N=1

(N+ 2N2)c(N, t)γdiv

= γdivM1 + 2γdivM2. (6.28)

The solution of this differential equation is given by

M2(t) = exp (2γdivt)
(
M

(0)
2 +M

(0)
1

)
− exp (γdivt)M

(0)
1 , (6.29)

M2(0) =M
(0)
2 . (6.30)

As expected, the width of the density increases with time.

Aggregation

Microcolonies are moving on a substrate with the help of their pili
(see chapter 3). When two colonies come close to each other, they will
coalesce, forming a new larger colony (see chapter 4). This process
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is one of the driving mechanisms of colony formation. In our master
equation it is incorporated by

A(N, t) =
1

2

∑
i+j=N

Kijc(i, t)c(j, t)

−
∑
i

KiNc(N, t)c(i, t), (6.31)

see [130]. The first term is the gain term, corresponding to the coales-
cence of two colonies {i}+ {j}→ {N}, forming a colony of size N. The
second term is the loss term, defining the transition {N}+ {i}→ {N+ i}.

Here, Kij is the transition rate. In two dimensions d = 2, a particle
that moves with a diffusion coefficient D hits a circle with radius R
with the rate

K ∝ DRd−2 = D, (6.32)

as shown in [130, 131]. Thus, we can define the transition rate to be

Kij = K0
(
Di +Dj

)
, (6.33)

with the proportionality constant K0. Here, Di is the diffusion coeffi-
cient of a colony, consisting of i cells.

In experiments it was shown that the diffusion coefficient of co-
lonies on top of a glass surface decreases with increasing colony
size [59]. Naively, one may assume that the diffusion coefficient could
follow the Stokes-Einstein relation, describing the diffusion due to
thermal brownian motion and given by

D =
kT

6πηR
, (6.34)

where k is the Boltzmann constant, T is the temperature, η the visco-
sity of the fluid a spherical particle is moving in and R is the radius of
this particle [132]. As shown in figure 6.4 it appears to decrease faster
than predicted by this relation.

Instead, as one can see in figure 6.4, a function of the form

Di =


0.47
Ri

µm3
s , Ri 6 1.5 µm

0.70
R2i

µm4
s , Ri > 1.5 µm

, (6.35)

can describe the behavior of the diffusion coefficient of a colony mo-
ving on a glass substrate. The radius Ri of a colony consisting of i
cells results from the proportionality of the cell number i to the vo-
lume of the colony i ∝ R3i (see appendix F.3.2). The the substrate of
the presented assembly data is glass.

Due to the complex form of the rates Kij, we cannot give an analy-
tical expression for all moments of the system given by

dc(N, t)
dt

= A(N, t). (6.36)
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Figure 6.4: In vitro microcolony motility as a function of the colony size for
colonies moving on a glass surface. Figures (a,b) and the under-
lying data of figure (c) were taken from [59]. (a) Diffusion coeffi-
cient of in vitro microcolonies moving on a substrate for different
time points. (b) Mean squared displacement of microcolonies of
different sizes. (c) Averaged Diffusion coefficient of microcolo-
nies moving on a substrate. Here we combined the data for the
different time points. As one can clearly see, the diffusion coeffi-
cient decreases faster than predicted by the Stokes-Einstein rela-
tion where D ∝ R−1.
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Instead, we will draft an approach to compute the moments and
discuss their general behavior. For the moments of order x we have

dMx

dt
=

∞∑
N=1

Nx
dc(N, t)

dt

=

∞∑
N=1

∑
i+j=N

1

2
(i+ j)xKijc(i, t)c(j, t)

−

∞∑
N=1

∞∑
i=1

NxKinc(N, t)c(i, t)

=

∞∑
i=1

∞∑
j=1

[
1

2
(i+ j)x − jx

]
Kijc(i, t)c(j, t). (6.37)

For the zeroth moment, corresponding to the number of aggregates
per unit area we get

dM0

dt
= −

∞∑
i=1

∞∑
j=1

1

2
Kijc(i, t)c(j, t) 6 0. (6.38)

For Kij > 0, the zeroth moment decreases due to the irreversible coa-
lescence of colonies.

The derivation of the first moment follows from

dM1

dt
=

∞∑
i=1

∞∑
j=1

1

2
(i− j)Kijc(i, t)c(j, t) = 0 (6.39)

and vanishes due to the relation Kij = Kji. We do not consider any pro-
liferation of the cells in this simplified system, thus the first moment
must be constant.

The second moment will increase in time, as resulting from

dM2

dt
=

∞∑
i=1

∞∑
j=1

(
i2

2
+ ij−

j2

2

)
Kijc(i, t)c(j, t)

=

∞∑
i=1

∞∑
j=1

ijKijc(i, t)c(j, t) > 0. (6.40)

Fragmentation

Next to mechanisms that lead to a growth of microcolonies, we also
consider fragmentation, the separation of a single cell from a microco-
lony. Here, we consider the simplest case where each aggregate loses
single cells with a constant rate F0. This is incorporated in the master
equation by

F(N, t) = F0

c(N+ 1, t) − c(N, t) ,N > 2

c(2, t) +
∑∞
k=2 c(k, t) ,N = 1

. (6.41)

Aggregates consisting of more than one cell N > 1 have a gain term
corresponding to the transition {N+ 1}→ {N}+ {1} and a loss term
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corresponding to the transition {N}→ {N− 1}+ {1}. Single cells only
have a gain term. Here it is important to notice that for the transition
{2}→ {1}+ {1} two single cells are generated.

For equation 6.41 we can also compute general expressions of the
moments, as given by

dMx

dt
=

∞∑
N=1

Nx
dc(N, t)

dt

= F0c(2, t) + F0
∞∑
N=2

c(N, t)

+ F0

∞∑
N=2

Nxc(N+ 1, t) − F0
∞∑
N=2

Nxc(N, t). (6.42)

For the first three moments we find

dM0

dt
= F0

∞∑
N=2

c(N, t) > 0, (6.43)

dM1

dt
= 0, (6.44)

dM2

dt
= −2F0

∞∑
N=2

c(N, t)(N− 1) 6 0. (6.45)

While the total number of aggregates is increasing, no new cells are
produced and the second moment is decreasing.

Solution of the master equation describing the dynamics of the colony size
density

We were solving the master equation 6.7 numerically with an Euler
algorithm and a time step ∆t = 0.02 s. This time is small enough to
guarantee that transitions where more than one cell divides within a
colony, for example {N}→ {N+ 2}, are negligible. For the numerical
solution we assumed that the maximal colony size is given by 3000
cells. We assume that initially we only start with single cells. In the
experiment small aggregates have already formed, as can be seen in
figure 6.2a, due to the time lag between the transfer of the cells on the
glass slide and the beginning of the microscopy. Thus, we introduce a
lag time tlag = 650 s such that the time point t = 0 in the experiment
corresponds to the time tlag in the master equation. The initial density
profile was chosen such that

c(N, 0) =

0.047 µm−2, N = 1

0, N > 1
. (6.46)

We consider three different cases of colony growth of increasing
complexity. The corresponding results are as shown in figure 6.5.
First, we only considered cell divisions with the time tdiv = 238 min.
As shown in figure 6.5, in this case the zeroth and the second mo-
ment differ clearly from the experiment. Then, we included aggrega-
tion with the parameter K0 = 0.72. In this case, the behavior of the
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Figure 6.5: Surface density and moments of colonies of different sizes from
the master equation. The times twere defined by the experiment,
where t = 0 in the plots corresponds to t = tlag in the master
equation. (a) The zeroth moment of the surface density, corre-
sponding to the total number of aggregates per unit area. The
black dots represent the experimental results for motile cells and
colonies, the lines show the zeroth moment, as computed from
the master equation 6.7 (the colors correspond to the legend of
(c)). (b) First moment of the surface density, corresponding to
the number of cells in the system. Independent of aggregation
or fragmentation, the increase of the number of cells is solely
influenced by cell divisions. (c) Second moment of the density,
corresponding to its width. Here ”Div” corresponds to the first
case where we only consider cell divisions, ”Agg+Div” corre-
sponds to the case where we consider cell divisions and aggrega-
tion and ”Agg+Div+Frag” additionally considers the fragmenta-
tion. Only the cases where we consider the aggregation of colo-
nies are able to reproduce the experimental data. (d) Surface den-
sity of colonies consisting of N cells for different time points for
the model. The points show the experimentally measured densi-
ties of moving aggregates, the solid lines correspond to the case
”Agg+Div”, the dotted line corresponds to ”Agg+Div+Frag”.
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moments agrees with the experiment, but we observe a extinction of
aggregates consisting of 1 to 10 cells for the time t = 180 min, which
does not coincide with our experimental observations. By considering
fragmentation with the rate F0 = 4× 10−3 Hz, we observe a qualitati-
vely similar behavior of the moments and the colony size density for
the solution of the master equation and the experiment. The chosen
parameters for the division time tdiv and the initial density c(N, 0) are
in agreement with the values measured experimentally in section 6.1.
To find K0 and F0 we sampled over a wide range of values.

As one can see in figure 6.5d, for larger times the density of indivi-
dual cells and small aggregates becomes smaller and larger aggrega-
tes become more likely. Due to the form of transitions that we consi-
der for the master equation, the colony size density diverges towards
an infinitely large microcolony. A process which we do not consider
in our model, due to the lack of experimental data, is the apoptosis of
cells, which may create a stationary state for t→∞. Such a process
would introduce the destruction of cells and could, for example, be
dependent on the size of the colonies.

To summarize, we can conclude that the interplay of aggregation,
fragmentation and cell divisions drives the formation of bacterial mi-
crocolonies.

6.3 summary

By measuring the colony size surface density experimentally and
comparing it to the predictions of a simple master equation, we were
able to identify aggregation, fragmentation and proliferation as the
main processes that govern the dynamics of bacterial colony self-
assembly. We found that particularly aggregation and fragmentation
seem to take a leading role in colony formation. A model in which
colonies only grow by cell divisions is not able to reproduce the ex-
perimental data. Additionally, when we neglect fragmentation of co-
lonies, we observe an extinction of the small aggregates that we do
not detect in our experiments. The presented master equation offers
a simple mathematical description of the dynamics of colony forma-
tion of Neisseria gonorrhoeae. It has only a small number of free pa-
rameters, the initial density of single cells c(N, 0), the division time
tdiv, the fragmentation rate F0 and the proportionality factor of the
interaction kernel K0. The initial density, the division time and the
colony-size dependence of the diffusion coefficient can be estimated
experimentally, leaving only two unknown parameter, F0 and K0.
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S U M M A RY A N D O U T L O O K

summary of the thesis

In this thesis, we have studied how type IV pili drive the dynamics
of bacterial aggregates with the help of experiments and theory. We
focused on different important aspects of bacterial dynamics, going
from the motion of single cells on a substrate (see chapter 3), over the
dynamics of cells within microcolonies and how they drive colony
coalescence (see chapter 4 and chapter 5), up to the assembly of sin-
gle cells to microcolonies consisting of up to thousands of cells (see
chapter 6). To study the bacterial dynamics mediated by type IV pili,
we developed a computational model (see chapter 2) and different
more specialized mathematical models to study the motion of cells
on a substrate (see section 3.1) and the assembly of microcolonies
(see section 6.2).

In the following, we shortly want to repeat the main findings of the
individual parts of the thesis:

• In chapter 3 we studied the motility of individual bacteria on
a substrate, with the help of type IV pili. We showed that a
wide range of previous experimental observations can be re-
produced by our model. The substrate motion is driven by the
collective interactions of multiple pili of a cell, causing persis-
tent motion with characteristic lengths that can exceed the pili
length. We show that this behavior is not necessarily caused, as
previously suggested [34], by directional memory of the pili dy-
namics. Instead, persistent motion emerges from a tug-of-war
of several pili.

• In chapter 4 we could show experimentally and by our com-
putational model that the merging of colonies differs from sim-
ple viscous fluids. For bacterial microcolonies, the characteristic
times of the bridge closure differ from the characteristic time
of the relaxation of an ellipsoidal colony towards a spherical
shape. We could provide experimental evidence to explain the
coalescence, which is driven by a gradient of motility within the
colony. While cells at the surface are highly motile, cells within
the colony bulk exhibit a weak motility only. With the help of
our computational model we found that besides the difference
in motility, the colony possesses more fluid-like properties. We
suggest that the motility gradient is a result of a spatial depen-
dence of the cell density within the colony, differences of the
dynamics of pili bindings and the forces mediated by pili.

• Next to the dynamics within colonies of wildtype cells, we also
studied the direct role of how pili organize microcolonies by

93
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studying mixtures of wildtype cells and different mutants (see
chapter 5). The mutants possess different properties of their pi-
lus apparatus, altering the force generation. While we observe
qualitative differences to predictions of the differential adhesion
hypothesis, previously applied to study the demixing of cell tis-
sues, we presented a case of demixing where alterations of the
force generation drive the sorting, instead of variations of the
adhesive properties of cells.

• Besides the dynamics of single cells and colonies, in chapter 6

we were also studying the assembly of multiple microcolonies.
By comparing experimental data of the colony size density to
an mathematical model, we could identify three processes that
govern the assembly of bacterial aggregates: aggregation, frag-
mentation and proliferation. We found aggregation to be the
main driving process of formation of large colonies. Additio-
nally, fragmentation is needed to generate a small population
of mobile single cells, as observed in experiments.

This thesis offers a new point of view how cells move on a substrate
with the help of pili and how pili are involved in the formation and
dynamics of bacterial aggregates. With the help of computational and
mathematical models we were able to study and explain a wide range
of experimental observations (from the motion of single cells, over
the dynamics of microcolonies and up to the assembly of multiple
colonies).

We have shown that pili-mediated forces highly affect the dyna-
mics of bacterial cells and colonies. For example, such processes can
lead to very complex behavior, as we could show for the motility
of individual cells within microcolonies. We observed highly motile
cells on the surface and weakly moving cells within the bulk of a co-
lony (see chapter 4). Such differential behavior can be interpreted as
the first step towards multicellular behavior (see section 1.3.2), where
we first do not see variations in the genetic properties of the cells,
but instead differences have a purely mechanical origin. These me-
chanical cues may then affect the gene expression of cells [133]. First
experimental evidence pointing in this direction is shown in Pönisch
et al. [124], where we observed that the gradient of motility in N. go-
norrhoeae can be correlated with the expression of genes connected to
the production of pilE, the subunits of a pilus, 7 hours after assem-
bly. In the future, it will be interesting to apply the methods of cell
rheology [134] to study the feedback of mechanical cues with the ex-
pression of a wide variety of genes connected to the pilus apparatus.

future directions

In the following, we will point towards multiple further directions of
research for which this thesis may provide important building blocks:

• In this thesis, we study bacteria of Neisseria gonorrhoeae as model
organism to investigate how pili mediate the dynamics of bacte-
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rial cells and aggregates. Many other bacteria also utilize pili
to induce motion on a substrate or the formation of microcolo-
nies. One example of such a bacterium is Neisseria meningitidis,
a bacterium that is found in the nasopharynx of roughly 10 %
of the human population [135] and is the causative agent of me-
ningitis, responsible for 73300 deaths in 2015 [79]. The bacteria
possess a geometry identical to Neisseria gonorrhoeae, but have
more pili and are more motile [24]. Another bacterium that uses
pili for motion on a substrate is Pseudomonas aeruginosa. The pili
of these rod-like cells are only located at the poles of the bacte-
ria. With the help of our computational model, we can study the
role of such geometrical differences. For example, P. aeruginosa
cells exhibit two different modes of motility, dependent on the
orientation of the cell relative to the substrate [26, 136–140].

• While we only studied the motion of single cells on a substrate
within this thesis, the presented computational and mathema-
tical models can also be applied to study the motion of bacte-
rial aggregates over a substrate. Experimentally, a peculiar beha-
vior of the diffusion coefficient depending on the colony radius
was observed (see figure 6.4) where coefficient decreases rapidly
with increasing colony size. The origin of this behavior remains
to be unraveled.

• In section 4.3 we were discussing a discrepancy between our
simulations of the internal dynamics and coalescence of micro-
colonies and the experimental results and concluded that this
may result from a simplification of our computational model in
which we only consider binary interactions of pili. In the future,
it will be interesting to include the dynamics of the pili network
wrapping around the cells within a colony, as seen in figure 1.5a.
Such a network will reduce the mobility of cells within the bulk
and on the surface of a colony.

• While we believe that our computational model offers a new
tool to study bacterial dynamics, we suggest that it can also be
applied to discover new approaches for the treatment of micro-
bial diseases. By understanding the formation of microcolonies,
a fundamental step in the infection process of Neisseria gonor-
rhoeae, we may be able to find ways to manipulate the assembly.
For example, microbeads with a coating to which pili can attach,
would alter the ability of the cells to generate forces and could
help to reduce their survivability.

concluding remarks

In this thesis we have shown that mechanical forces, generated by
type IV pili, play a fundamental role during the formation and dy-
namics of bacterial microcolonies, the precursors of biofilms. Expe-
riments were studied hand in hand with theory to provide compre-
hensive understanding of such early biofilms. We hope that such an
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interdisciplinary approach will bring further new results on the role
of biophysical processes in the formation of biofilms and the adjacent
fields of multicellularity and development.
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In the simulation, we do not create or destroy pili every time step,
but only every ∆tdyn = 0.02 s. Furthermore, within the simulation
the binding and unbinding of pili is also checked every ∆tdyn. Due
to the introduction of ∆tdyn, we are able to increase the simulation
speed considerably, without observing a qualitative difference in the
outcome. This is valid as long as the binding, unbinding and pilus
creation times are larger than ∆tdyn. This is not the case for the fast
parameter set (see table 3.1), for which we chose ∆tdyn = 2.5× 10−6 s
or smaller values. Simulations for different values of ∆tdyn revealed
no qualitative difference.

a.1 geometry of the cells and free pili dynamics

The start and end points of pilus k are given by the position vectors
r(s)
k and r(e)

k . New pili are created on the surface of the cocci and need
to fulfill the conditions |r(a)

i − r(s)
k | > R and |r(b)

i − r(s)
k | > R, where r(a)

i

and r(b)
i are the centers of the two cocci (a) and (b) of cell i and R is

the radius of the cocci.
When a free pilus of length l(free)

k emerges from the surface of the
cell, the position of its end point is given by

r(e)
k = r(s)

k + l
(free)
k

r(s)
k − r(j)

i

R
(A.1)

where r(j)
i is the position of the coccus from which the pilus emerges

from. The contour length l(cont)
k of the pilus k is given by

l
(cont)
k = |r(s)

k − r(e)
k |. (A.2)

When a pilus is protruding or retracting, the length of the free pilus
changes, according to

l
(free)
k (t+∆t) − l

(free)
k (t) = vpro∆t (A.3)

l
(free)
k (t+∆t) − l

(free)
k (t) = −vret∆t. (A.4)

When a pilus k hits the substrate, its end point will not enter the
substrate, but slide along its surface along the same x− y−direction
as before the collision with the z−component being 0. In this case, the
length of the pilus is the same as the free length l(free)

k .

a.2 binding of pili to other pili

In order to describe the binding of two pili in three-dimensional
space, we consider thermal fluctuations of a semiflexible polymer.

97

[ April 9, 2018 at 11:33 – classicthesis version 4.2 ]



98 details of the simulation model

The cone-like volume of a pilus results from the beam equation of
a semi-flexible rod [94]:

dbeam(l) =

√
l3

3lpers
, (A.5)

where l is the distance of pilus k from its start point r(s)
k . The shape

of such a beam is shown in figure 2.1C.
The binding of two pili is modeled by randomly picking a free pilus

k with a rate γatt,pp that is described as the cone. This pilus checks
with rate γatt,pp whether it can bind to any surrounding pilus within
the cone. If there is an available pilus, both will bind, as long as the
computed binding point is not further away from the pilus start point
than its free length l(free)

k . In general, the resulting distance between
the binding point and the start point will be smaller than the free
lengths of the pili. The difference of the lengths, called the tail length
l
(tail)
k , is saved as long as the pili are attached to each other. When

both pili detach again, the tail length will be added back to the free
length of the pilus, so that it will have a new length l(free)

k + l
(tail)
k .

a.3 forces and motility

a.3.1 Excluded volume forces

If the coccus j of a cell overlaps with the substrate with the distance
∆dov, a volume exclusion force is generated. This force points in the
normal direction of the substrate (here in the z−direction ez, see fi-
gure 2.1 and 2.2A) and is given by

F(cs)
j = kcs∆dovez, (A.6)

where kcs is the excluded volume spring constant. The force acts on
the point where the coccus position is projected on top of the sub-
strate (x and y component is the same as for the coccus position, the
z-component is set to 0). For a high excluded volume constant kcs this
is valid, because the cell will only weakly intersect with the substrate.

If two cells i and j overlap, such that the distance of their cocci is
smaller than the cocci diameter 2R, a repulsive force is generated (see
figure 2.2B), given by

F(cc)
ij = −kcc

(
2R− |rij|

) rij

|rij|
, (A.7)

where rij is the vector point from the coccus of cell i to the coccus of
cell j and kcc is the excluded volume spring constant.

a.3.2 Pili forces

When a pilus k is bound to the substrate, it creates a force according
to

F(ps)
k = max

[
0, kpili

(
l
(cont)
k − l

(free)
k

)] r(se)
k

|r(se)
k |

(A.8)
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with the pilus contour length l(cont)
k , its free length l(free)

k , the spring
constant kpili and r(se)

k = r(e)
k − r(s)

k being the vector pointing from the
pilus start point to its end point.

For a pilus k attached to another pilus j the force is given by

F(pp)
k = max

[
0, kpili

(
l
(cont)
k − l

(free)
k − l

(free)
j

)] r(se)
k

|r(se)
k |

. (A.9)

If two pili bind to each other, we set the end point of pilus k to the
start point of pilus j. Then, r(se)

k is the vector pointing from the start
point of pilus k to the start point of pilus j and the contour length of
the pilus k is the distance between these start points. Thus, the force
is computed by subtracting the sum of the free lengths of the two pili
l
(free)
k + l

(free)
j from the contour length.

Here, it is important to highlight that the spring constant kpili of the
pilus does not depend on its length. This is a valid approximation, as
long as the spring constant is large and only small displacements, re-
lative to the average pili length, are encountered. The spring constant
only affects the time a pilus needs to reach the stalling force, but does
not affect the value of the force the pilus finally reaches. This simpli-
fication was introduced in order to increase the computational speed
of the simulation, but creates a problem for short pili whose contour
lengths l(cont)

k are no longer able to reach the stalling force. To mitigate
this issue, pili having a contour length smaller than l(cont)

k < Fstall/kpili
always generate the stalling force in our simulation. This is motivated
by the fact that short pili will have a very large spring constant. For
large values of the spring constant the relaxation time of the force is
small (see section D.1).
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B
E X P E R I M E N TA L P R O T O C O L S

The experiments were performed in the lab of Nicolas Biais (Brook-
lyn College, City University of New York) by Wolfram Pönisch, Kha-
led Alzurqa, Hadi Nasrollahi and Nicolas Biais. The protocols were
taken from [124].

b.1 bacteria strains and growth conditions

The wild-type (WT) strain used in this study is MS11. The ∆pilT
mutant was obtained by an inframe allelic replacement of the pilT
gene by a Kanamycin resistance cassette. Fluorescent proteins (YFP,
mCherry or tdTomato) driven by a consensus promoter were incorpo-
rated by allelic replacement together with an antibiotic marker (either
Kanamycin or Chloramphenicol). Similarly mCherry driven by the re-
porter of the pilin gene (370 bp before the beginning of the starting
ATG of the pilin ORF) was incorporated by allelic replacement to-
gether with a Chloramphenicol maker. Bacteria were grown on GCB-
medium base agar plates supplemented with Kellog’s supplements at
37◦C and 5 % CO2. 80 µg/ml of Kanamycin or 7 µg/ml of Chloramp-
henicol were added when growing mutants with the corresponding
antibiotic resistance cassette. Cells were streaked from frozen stock
allowed to grow for 24 hours and then lawned onto identical agar
plates and used after a 16 to 20 hour growth period.

b.2 colony formation

Bacteria from lawns on agar plates were resuspended in 1 ml of GCB
medium at an optical density of OD = 0.7. 100µl of the suspension
was added in the well of the 6 well plate containing 2 ml of GCB
medium with a BSA coated coverglass (round 25 mm diameter cover-
glasses (CS-25R) Warner Instruments) at the bottom or without. The
6 well plate was centrifuged at 1600xg in a swinging bucket in an
5810R centrifuge (Eppendorf) for 5 minutes resulting in single bacte-
ria uniformly coating the bottom of the well. For direct imaging the
coverglass were transferred to an observation chamber (attofluor cell
chamber, Thermo Fisher Scientific). In the case of mixture the suspen-
sion at OD = 0.7 of both components of the mixture were prepared
and a new 1 ml was prepared by the proper ratio of the two suspen-
sion. 100 µl of that new suspension was used similarly to what was
described previously.

101
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b.3 microscopy and coalescence experiments

All movies were obtained on a Nikon Ti Eclipse inverted microscope
equipped for epifluorescence and DIC microscopy and with an opti-
cal tweezers setup all under an environmental chamber maintaining
temperature, humidity and C. The objective used is a 60X plan Apo
objective. The camera used were either a sCMOS camera (Neo, An-
dor) or a CMOS USB camera (DCC1240M, Thorlabs). 1Hz fluorescent
movies and 0.1Hz DIC movies of either microcolony merger or fol-
low up of single cell motility were taken for further analysis. In the
case of microcolony merger, microcolonies were preformed and were
brought into contact either by optical tweezers or hydrodynamical
flow.
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C
G E O M E T R I C E S T I M AT I O N O F T H E PA R A M E T E R S
O F T H E S T O C H A S T I C M O D E L O F C E L L M O T I O N
O N A S U B S T R AT E

By considering geometric features of a spherical cell and the known
dynamics of type IV pili system we can estimate the values of the
parameters of the stochastic model. In particular, we estimate the at-
tachment rate γatt and the average pili length, projected on the sub-
strate L.

c.1 ratio of attaching pili

The geometry of the cell is illustrated in figure C.1a. In this model
we assume that cells can be described by spheres with radius R. The
z-position of the cell center is chosen to be the same as the radius R.
Thus, the cell is only able to move in the x−y−plane. For now, the pili
are modeled as lines with length l protruding perpendicular from the
surface of the spherical cell. The position from which a pilus emerges
can be defined by an angle θ, assuming that we have a rotational
symmetry around the z-axis. Later, we will only consider those pili
that are able to attach to the surface, which is true for θ ∈

(
π
2 ,π

]
. The

pili have an exponential length distribution given by

pc (l) =
1

lc
exp

(
−
l

lc

)
(C.1)

with a characteristic pili length lc [27]. A pilus can attach to the
substrate, if its length is larger than its minimal length

lmin = −
R

cos θ
− R. (C.2)

which corresponds to the length of the line between the pilus start
point and the intersection point with the x − y−axis for z = 0 (see
figure C.1).

The ratio of all pili longer than this length determines the fraction
of pili that are long enough to bind to the surface stochastically with
a rate γatt. The probability density function of the time of attachment
is then given by

patt(t) = γatt exp (−tγatt) (C.3)

with the time t. A pilus, thats length l results from the probability den-
sity function pc(l), protrudes until it reaches the minimal pili length
lmin, intersects with the substrate and continues its protrusion for the
length l− lmin. Then it starts to retract over the same distance as the
protrusion. Thus, the pilus tip, which is responsible for the binding
to the substrate, can bind to the substrate along the length l− lmin

103
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104 geometric estimation of the parameters of the stochastic model

a

b c

Figure C.1: (a) Geometry of the system. The pili protrude perpendicular
from the surface of a spherical cell of radius R. The point from
where a pilus emerges is defined by an angle θ. Pili that reach a
length l larger than the minimal length lmin are able to intersect
with the substrate and can bind to it. (b) Attachment probability
Patt,θ of pili emerging from the surface of a sphere (see equa-
tion C.5). (c) Ratio of attached pili Γ as a function of the cell
radius R (see equation C.6) and scalings for large and small cell
radii R.
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C.1 ratio of attaching pili 105

for the protrusion and along the same length for the retraction. The
protrusion and retraction speed have the same value v0. This is mo-
tivated by experimental measurements that show that the values of
both speeds are in the same order of magnitude [23]. The full process
of protrusion and retraction takes the time 2(l− lmin)/v0, where the
2 results from the cycle of protrusion and retraction. The attachment
probability of the pilus tip during this time is given by

Patt,min =

∫2(l−lmin)/v

0

dt patt(t)

= 1− exp [−2 (l− lmin) /latt] , (C.4)

where we define the length scale of attachment latt = v0 / γatt. Con-
sidering this effect, we can compute the attachment probability Patt,θ

of a pilus emerging from the cell surface from a point defined by the
angle θ. Therefore, we include its length distribution pc, so that

Patt,θ =

∫∞
lmin

dl pc (l)Patt,min (l)

= Pγ exp
[
R

lc

(
1+

1

cos θ

)]
(C.5)

with the prefactor Pγ = 2lcγatt/ (v0 + 2lcγatt). For pili that do not point
towards the substrate, the attachment probability is 0, corresponding
to Patt,θ(θ 6 π /2) = 0. The probability Patt,θ is shown in figure C.1b.
We assume that the ratio of attached pili, given in equation C.5, is
equivalent to a density on the surface of a spherical cell with radius
R. From this equation we want to compute the total number of pili
that intersect with the substrate and bind to it. The total number of
attached pili is given by an integration of this density over the surface
of the spherical cell (and by considering the pili surface density ρp),
so that

Natt = ρp

∫
A

dA Patt,θ

= NpiliPγ

[
1+

R

lc
exp

(
R

lc

)
Ei
(
−
R

lc

)]
(C.6)

with the exponential integral function, defined as

Ei (x) = −

∫∞
−x

dt
exp (−t)

t
, (C.7)

and the total number of pili of the lower half sphere of the cell, given
by

Npili = 2πρpR
2. (C.8)

Furthermore, we can rewrite Pγ = 2lc/(2lc + latt) with the characteris-
tic length latt of the Poisson process characterizing the attachment to
the substrate.

The fraction of attached pili is now given by

Γ =
Natt

Npili
= Pγ

[
1+

R

lc
exp

(
R

lc

)
Ei
(
−
R

lc

)]
. (C.9)
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For small cell radii it converges towards

Γ(R� 1) = Pγ, (C.10)

and for large cell radii it exhibits a scaling

Γ(R� 1) = Pγ
lc

R
. (C.11)

We can give a simple argument why the ratio is decreasing with R−1

for large cells. The total number of pili is proportional to the cell
surface, thus it follows ∝ R2. For large cells we can assume that only
those pili will attach to the substrate, for which the distance of the
start point is not larger than a constant value h. The surface area of
the spherical cap of a sphere with radius R and a cap height h is
given by 2πRh, thus it is proportional to R. By dividing the surface
area of the cap by the surface area of the sphere, we get a ratio that is
proportional to R−1. For very small cells, the radius R is comparable
to h, thus all pili (at least of the lower half sphere) can attach to the
substrate and both areas are then proportional to R2, making the ratio
constant.

c.2 effective pili attachment rate

As computed in the last subsection, the ratio Γ defines the probability
that a pilus, emerging from the surface of a spherical cell, will attach
to the substrate. In order to attach to the substrate, it first needs to
grow for a time tmin until it reaches the length lmin (see equation C.2).
When it reaches the surface, it will bind to the surface with a time
resulting from the binding rate γatt. We assume that on average a
pilus will only attach ones to the substrate. In order to be able to
attach to the substrate, a pilus, protruding with the velocity v0, must
reach a length lmin before it is long enough to hit the substrate (see
equation C.2) and would be able to attach to it. This corresponds to
a time tmin = lmin/v0. Thus, the attachment rate of a pilus, emerging
from a point defined by the angle θ (see figure C.1) is then given by

γθ =
1

tmin(θ) + tatt
=

v0
lmin(θ) + latt

(C.12)

Here, lmin was defined in equation C.2 and the characteristic atta-
chment length is given by latt = v0tatt = v0/γatt. By integrating over
the spherical shape of the cell, we can compute the mean attachment
rate of all pili, given by

〈γθ〉Sphere =

∫
dA γθ∫

dA

= v0
latt − R

[
1+ ln

(
latt
R

)]
(latt − R)

2
. (C.13)

If we now consider the fact that pili only attach to a substrate with a
probability Γ and in every other case will only protrude and retract,
but not attach, we get the effective rate

γeff = Γ〈γθ〉Sphere. (C.14)
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Figure C.2: Effective pili attachment rate cells of different sizes R and diffe-
rent attachment lengths latt/lc.

The behavior of the effective rate as a function of the cell size is shown
in figure C.2.

c.3 length scale of the distance of pili start and atta-
chment point

In the following we calculate the mean displacement a pilus, protru-
ding from a spherical cell sitting on top of a surface, can mediate. This
displacement corresponds to the distance between the attachment
point of a pilus emerging from the surface of a cell of radius R and
its anchor point at the cell surface, defined by the angle θ, projected
onto the substrate. As depicted in figure C.3, we consider two cases:
(i) pili emerging perpendicular from the cell surface and possessing a
infinite pivotal stiffness, thus bending when they hit the surface, and
(ii) sliding of a stiff pilus along the surface with a vanishing pivotal
stiffness at the anchoring point.

Infinite pivotal stiffness of pili

In the first case we assume that a pilus possesses an infinite pivotal
stiffness. Thus, it will always protrude from the cell with the same
angle as given by the surface angle θ (see figure C.3a). When the
pilus hits the surface, it bends and moves parallel to it. In this case,
there are two distinct lengths that contribute to the distribution of
attachment points on the surface (see figure C.3):

• The horizontal distance between the start point of the pilus and
the intersection point between the pilus protruding perpendicu-
lar from the cell membrane and the substrate. This distance is
given by

d1 (R, θ) = −R tan θ− R sin θ. (C.15)

• The second contribution d2 results from the motion of the pilus
end tip over the substrate until it starts to retract. At the same
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108 geometric estimation of the parameters of the stochastic model

a b

c d

Figure C.3: Estimating the mean displacement mediated by pili to a cell mo-
ving over a substrate. (a) Geometry of the pilus binding model
with infinite pivotal stiffness of the pilus emerging perpendi-
cular from the surface of the cell. When a pilus is longer than
the minimal length lmin it hits the surface and, due to the high
pivotal stiffness, bends and moves parallel to the surface. (b) Ge-
ometry of the pilus binding model with pili sliding along the
substrate. Here, we neglect the pivotal stiffness of the pili. Due
to the sliding, they do not necessarily to protrude perpendicu-
larly from the cell surface. (c) Cell size-dependence of the mean
value of the displacement Lpivot for an infinite pivotal stiffness
of pili growing from the cell surface for different values of latt/

lc. (d) Cell size-dependence of the mean value of the distance
Lsliding for different values of latt/lc.
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time it will bind to the substrate with the rate γatt. Both pro-
cesses are modeled as Poisson processes, that are characterized
by the pilus tip, starting at the point x = 0 and moving with a
constant velocity v0. After the pilus reaches a length given by
the exponential length distribution (see equation C.1) it retracts,
switching its direction of motion until it reaches its start point
again. During this protrusion and retraction, it is able to attach
to the substrate as given in equation C.3.

In order to estimate the mean distance of this attachment point
from its starting point, we first assume that we have a point
wandering to the position x = L and turning its direction of
motion at this point. The probability density function pL(x) to
find the tip of a pilus performing the forward and backward
motion over the length L and binding to the point at the position
x is given by

pL (x) =

[
exp

(
− x
latt

)
+ exp

(
−2L−xlatt

)]
latt − latt exp

(
− 2Llatt

) , (C.16)

where we define the characteristic attachment length latt = v0/γatt.
Due to the stochastic binding of the pilus tip with the atta-
chment length latt, not all pili will bind. The probability of a
pilus to attach to the surface is given by

PL =

∫2L/v0
0

dt patt = 1− exp
(
−
2L

latt

)
. (C.17)

In the next step, we consider the exponential length distribu-
tion of the pili, instead of a fixed length L. The underlying pro-
bability density function is the pili length distribution pc (see
equation C.1), multiplied with the probability of attachment to
the surface for a given length, PL. We use this probability den-
sity function in order to compute the mean probability density
function of the binding point distribution pL, so that we get

p2(x) =

∫∞
L dL PL(L)pL(x,L)pc(L)∫∞

0 dL PL(L)pc(L)
=

1

latt,c
exp

(
−
x

latt,c

)
(C.18)

where p2 is the probability density function characterizing the
distribution of the second length scale d2 (see figure C.3a) and
defining where a pilus tip exhibiting a cycle of protrusion and
retraction and moving with a constant velocity v0 over the sur-
face will bind. Here we define

latt,c =
1

1+ lc
latt

lc. (C.19)

In order to compute the probability density function of the attachment
points for a given angle θ, defining from which point on the surface
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of the cell a pilus emerges from, we need to combine p2(d2) and d1,
so that we get

p1,2(x, θ) =

0 x < d1(R, θ)

p2(x− d1(R, θ)) x > d1 (R, θ)
. (C.20)

Here, x− d1 results from the fact that every pilus that attaches to the
surface first needs to be longer than lmin (see equation C.2) and thus
contributes a initial displacement, given by d1. The mean distance is
given by

〈x〉p1,2
= d1(R, θ) + latt,c (C.21)

where the mean is computed corresponding to the distribution p1,2.
We compute the mean distance by taking 〈x (θ)〉p1,2 and averaging

this value over the cell surface. Therefore, we need to consider the
probability of pili to attach to the surface Patt,θ for a given angle θ, as
given in equation C.5 and integrate over the surface of the spherical
cell. This is given by

Lpivot =

∫
dA 〈x〉p1,2

Patt,θ(θ)∫
dA Patt,θ(θ)

=

∫
dA d1(R, θ)Patt,θ(θ)∫

dA Patt,θ(θ)
+ latt,c (C.22)

and solved numerically (see figure C.3c). The first term is a result of
the geometry of the cell, the second term is a result of the stochastic
binding of the pilus tip.

Sliding of the pilus tip along the substrate

In the case of sliding the pilus possesses a negligible pivotal stiffness
while protruding from the surface of the cell, but an infinitely large
bending stiffness (see figure C.3b). The projected distance between
the start point and the end point of a pilus is then given by

lslid =

√
(lmin + l)

2 − h2 (C.23)

with lmin being the minimal distance the pilus needs to reach the
surface (see equation C.2). Here, l > lmin and the height of the start
point is given by

h = R+ R cos θ, (C.24)

where the angle θ defines from which point on the cell surface the
pilus is emerging from.

We define a weight function from the probability distribution of
the attachment points (see equation C.3) and multiply it by the pro-
bability for pili emerging from a point, defined by the radius R and
the angle θ (see equation C.5). Then, we integrate over the surface of
the cell S:

Lsliding(R) =

∫
dS

∫∞
lmin(R,θ) dl ′ lslid(R, l ′, θ)p1,2(R, l ′, θ)Patt,θ(R, θ)∫

dS
∫∞
0 dl ′ p1,2(R, l ′, θ)Patt,θ(R, θ)

.

(C.25)

Equation C.25 has been solved numerically, with results depicted in
figure C.3d.
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D
S O L U T I O N S F O R S I M P L I F I E D M O D E L S O F
P I L I - M E D I AT E D C E L L M O T I O N

d.1 pili forces in a simplified one-dimensional system

In this chapter we want to study a simplified one-dimensional sy-
stem in order to learn about how pili build up a pulling force and
how these forces are translated into the motion of the corresponding
cell/microcolony.

In the system we want to study (see figure D.1), a cell possesses Nl
pili on its left side and Nr pili on its right side. These pili are modeled
as Hookean springs with a spring constant kpili and have a contour
length Ll and Lr, giving the length between the anchor point of the
pilus (the point where it is attached to the cell) and its attachment
point at the left or right side, for example to walls. If the same pilus
would not be attached to the wall, its length, defined by ll or lr, could
be different from the contour length. The force such a pilus produces
is given by

Fl = kpili (Ll − ll) , (D.1)

Fr = kpili (Lr − lr) . (D.2)

The total force acting on the cell is then given by

Ftot = −NlFl +NrFr. (D.3)

Here, we assume that kpili is not dependent on the length of the pili.
In such a one-dimensional system we define the position xc of a cell
by the length of the pili, such that

L̇l = ẋc, (D.4)

L̇r = −ẋc. (D.5)

Additionally, we can also express the velocity of the cell by conside-
ring the translational mobility µtrans:

ẋc = µtransFtot. (D.6)

By considering the stalling of pili, we define the force-dependence of
the free length of pili (see equation 2.3):

l̇l = −max
[
0, vret

(
1−

Fl

Fstall

)]
, (D.7)

l̇r = −max
[
0, vret

(
1−

Fr

Fstall

)]
, (D.8)

with the retraction velocity vret and the stalling force Fstall. By combi-
ning all these equations, we can write

Ḟl = −kpiliµtransNlFl + kpiliµtransNrFr

+ kpilivret max
[
0, 1−

Fl

Fstall

]
(D.9)

111
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Figure D.1: Estimating the time-dependent force of pili in a simplified one-
dimensional system. (a) Pili are only attached to one side. (b)
The same number of pili is attached on both sides. (c) Different
number of pili attached on both sides.

and

Ḟr = kpiliµtransNlFl − kpiliµtransNrFr

+ kpilivret max
[
0, 1−

Fr

Fstall

]
. (D.10)

Together with the initial conditions

Fl(0) = 0, (D.11)

Fr(0) = 0 (D.12)

we solve this system of ordinary differential equations in the follo-
wing subsections.

We assume that the length of the pilus is very long, such that we
can neglect cases in which it would reach a free length ll < 0 or lr < 0.

d.1.1 Pili only attached to one side

Here, we assume that pili are only attached to the right side (see fi-
gure D.1a), so that we have to solve the ordinary differential equation

Ḟr = −kpiliµtransNrFr + kpilivret

(
1−

Fr

Fstall

)
,

with Fr(0) = 0. The solution is given by

Fr = Fsingle

[
1− exp

(
−

t

τsingle

)]
, (D.13)

where

Fsingle =
Fstall

1+ FstallµtransNr
vret

, (D.14)

τsingle =
Fstall

kpili (FstallNrµtrans + vret)
. (D.15)
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The velocity of the cell is then given by

v = µtransNrFr = vsingle

[
1− exp

(
−

t

τsingle

)]
, (D.16)

with

vsingle =
vret

1+ vret
FstallNrµtrans

. (D.17)

The force Fsingle fulfills 0 6 Fsingle < Fstall and the cell velocity vsingle
fulfills 0 6 vsingle < vret for a finite number of attached pili on one side
of the cell.

d.1.2 Similar number of pili on both sides

In the case of equal number of pili on both sides (see figure D.1b), the
forces on both sides are equal Fl = Fr and the ordinary differential
equations have the form

Ḟl = kpilivret max
[
0, 1−

Fl

Fstall

]
, (D.18)

Ḟr = kpilivret max
[
0, 1−

Fr

Fstall

]
. (D.19)

Then, the forces behave as

Fl = Fr = Fstall

[
1− exp

(
−

t

τequal

)]
, (D.20)

where

τequal =
Fstall

kpilivret
. (D.21)

It is important to note that the forces are no longer dependent on the
number of pili. Additionally, the velocity of the cell is v = 0.

d.1.3 Different number of pili on both sides

For an unequal case of pili binding on both sides of the cell (see
figure D.1c), we need to solve the equations D.9 and D.10. Here, we
assume that Nl < Nr. In this case, the pili on the left side will reach a
force that will be larger than the stalling force and will no longer be
able to reduce their free pili length ll.

Initially the pili follow the set of ordinary differential equations

Ḟl = kpili

[
µtrans (−NlFl +NrFr) + vret

(
1−

Fl

Fstall

)]
(D.22)

and

Ḟr = kpili

[
µtrans (NlFl −NrFr) + vret

(
1−

Fr

Fstall

)]
. (D.23)
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The solution is

Fl(t) = Fl,0 − Fl,1 exp
(
−
t

τ1

)
− F2 exp

(
−
t

τ2

)
, (D.24)

Fr(t) = Fr,0 − Fr,1 exp
(
−
t

τ1

)
− F2 exp

(
−
t

τ2

)
(D.25)

with

Fl,0 =
Fstall (2FstallNrµtrans + vret)

Fstall (Nl +Nr)µtrans + vret
, (D.26)

Fl,1 =
2FstallNr

Nl +Nr
, (D.27)

F2 =
Fstall (Nl −Nr) vret

(Nl +Nr) [Fstall (Nl +Nr)µtrans + vret]
, (D.28)

Fr,0 =
Fstall (2FstallNlµtrans + vret)

Fstall (Nl +Nr)µtrans + vret
, (D.29)

Fr,1 =
2FstallNl

Nl +Nr
, (D.30)

τ1 =
Fstall

kpilivret
, (D.31)

τ2 =
Fstall

kpili [Fstall (Nl +Nr)µtrans + vret]
. (D.32)

Here, τ1 corresponds to the time scale observed for the motion of a
cell if the same number of pili are attached on both sides. The time
τ2 corresponds to the time for the case that all pili are only attached
on one side. Then, the velocity of the cell is given by

v(t) = µtrans(−NlFl +NrFr)

= v0

[
1− exp

(
−
t

τ2

)]
, (D.33)

with

v0 =
Fstall (Nr −Nl)µtransvret

Fstall (Nl +Nr)µtrans + vret
. (D.34)

These equations are correct until the first pili, for Nl < Nr the pili on
the left side, reach the stalling force Fstall at the time tstall. This time
needs to be computed numerically. Then, the ordinary differential
equations have the form

Ḟl = kpiliµtrans (−NlFl +NrFr) (D.35)

and

Ḟr = kpili

[
µtrans (NlFl −NrFr) + vret

(
1−

Fr

Fstall

)]
, (D.36)

and the initial conditions

Fl(tstall) = Fstall, (D.37)

Fr(tstall) = Fright,trans. (D.38)
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Here, Fright,trans needs to be computed numerically from equation D.23.
Again, the solution has a form

Fl(t) = Fl,3 − Fl,4 exp
(
−
t− tstall

τ4

)
− Fl,5 exp

(
−
t− tstall

τ5

)
,

(D.39)

Fr(t) = Fr,3 − Fr,4 exp
(
−
t− tstall

τ4

)
− Fr,5 exp

(
−
t− tstall

τ5

)
,

(D.40)

with

Fl,3 =
Nr

Nl
Fstall, (D.41)

Fr,3 = Fstall, (D.42)

τ4 =
2Fstall

kpili [Fstall (Nl +Nr)µtrans + vret − vt]
, (D.43)

τ5 =
2Fstall

kpili [Fstall (Nl +Nr)µtrans + vret + vt]
, (D.44)

and where

vt =

√
[Fstall (Nl +Nr)µtrans + vret]

2 − 4FstallNlµtransvret. (D.45)

Again, we compute the resulting velocity of the cell by

v(t) = µtrans(−NlFl +NrFr)

= v4 exp
(
−
t− tstall

τ4

)
+ v5 exp

(
−
t− tstall

τ5

)
. (D.46)

We will not give the analytical expression for Fl,4, Fl,5, Fr,4, Fr,5, v4 and
v5 due to their long form. Where it is used, the exact expression is
taken for further calculations.

d.2 cell velocity in a simplified two-dimensional mo-
del

In the previous chapter we have shown that a cell, having pili atta-
ched at one particular side in a one-dimensional system, will be never
able to move with velocities faster than the pilus retraction velocity
vret (see equation D.16 and equation D.17). Here, we want to show
that in a two-dimensional system, this is not necessarily the case and
a cell can move with velocities that are considerably higher.

Because we only want to show that such velocities can emerge in
a two-dimensional system and do not want to focus on the exact
values of these velocities, we will not present analytical calculations
to get the expression of the velocities, but instead we point out the
governing equations and present their numerical solution.

Here, we assume that a cell possesses two pili that are attached to
a substrate such that initially the angle between them has a value of
90◦. At the beginning, the contour length lcont of the pili and their
free length lfree (the length a pilus would have in equilibrium if it is
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Figure D.2: Estimating the cell velocity in a simplified two-dimensional sy-
stem. (a) Geometry of the simple two-dimensional model stu-
died to show that pili-mediated motility can generate cell velo-
cities considerably faster than the pilus retraction velocity. The
black dot represents the cell, the red lines are the pili thats atta-
chment points are given by the red dots. The cell will move until
it reaches the position between the two pilus attachment points,
highlighted by the dotted circle. (b) Ratio of the cell velocity v
and the pilus retraction velocity vret as a function of time for
the two-dimensional model (solid line). The dotted line repre-
sents

√
2vret, the absolute velocity of a particle moving with vret

in x- and y-direction. Here, we picked L = 2 µm, vret = 2 µm/s,
Fstall = 180 pN, k = 2000 pN/µm and µtrans = 1 µm/ (pN s).

not attached to the substrate) is given by L. Then, both pili start to
retract with the velocity vpili, where the pilus velocity vpili depends
on its force F by

vpili =
dlfree

dt
= −max

[
0, vret

(
1−

F

Fstall

)]
, (D.47)

with the stalling force Fstall (see equation 2.3). Additionally, we as-
sume that the pili are Hookean springs with a spring constant kpili.
Then, the pilus force is given by

F = kpili (lcont − lfree) , (D.48)

pointing in the direction of the pilus attachment point emerging from
the surface of the cell. The resulting force of the cell Ftot,y, pointing
due to the symmetry of the system (as shown in figure D.2a) in the
y-direction and being the sum of the y-components of the pilus forces
is then affecting the motion of the cell in the overdamped regime,

v = µtransFtot,y, (D.49)

with the translational mobility µtrans. If we solve this system numeri-
cally, we observe cell velocities v that have values that are considera-
bly higher than the pilus retraction velocity vret (see figure D.2b). This
velocity can be also higher than

√
2vret, which is the absolute velocity

of a cell moving with vret in the x- and the y-direction.
When we observe the trajectory of the cell we see that it moves

from its start point to the point where it is right in between the two
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pilus attachment points (see figure D.2a). Along this trajectory, the
cell follows a velocity profile that is shown in figure D.2b. As one can
see, it clearly reaches velocities that are up to four times higher than
the pilus retraction velocity vret. This behavior originates from geo-
metric effects where only a short retraction of the pili can correspond
to a large displacement of the cell. Finally, the cell velocity converges
towards v = 0, corresponding to the point where the cell is trapped
between the two pili attachment points.
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E
I M A G E A N A LY S I S O F E X P E R I M E N TA L D ATA

e.1 edge detection of microcolonies

In order to detect the edges of single colonies and the merger from
DIC data the same algorithm was used (see figure E.1). Initially, we
computed the first derivatives of intensities in x- and y-direction of a
Gaussian filtered image (see figure E.1B), computed its absolute value
and thresholded the value (see figure E.1C). Afterwards, we dilated
and eroded the binary image, filled all remaining holes and removed
small objects (see figure E.1D and E.1E). For all steps internal functi-
ons of Matlab were used.

e.2 bridge height and axis ratio of coalescing microco-
lonies

We analyzed 28 DIC movies of coalescing microcolonies in total that
were provided by Nicolas Biais (Brooklyn College, City University of
New York).

In order to fit an ellipse to two coalescing colonies, their binary
shape was computed as described in appendix E.1. In order to com-
pute the binary shape of the colonies, we computed the central mo-
ments of the binary image (see [141]), what allowed us to estimate
the orientation of the colonies, the size of its long and short axis, and
the ratio of them.

In order to compute the height of the bridge that forms between
coalescing colonies, we rotated the binary image such that the colo-
nies were oriented along the x-axis and calculated the COM of the

Figure E.1: Steps of the algorithm used to extract the edges of colonies from
DIC images.
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combined regions. Afterwards, we moved a line of length L cente-
red around the center such that it moved perpendicular to the axis
connecting the two colonies. The bridge was defined as the range
for which the whole line could be found inside of the colony region.
L was chosen to be small enough to be not affected by the elliptical
shape of the colonies. For the late coalescence the results were compa-
red to the short axis of the ellipse and exhibits qualitative agreement.

e.3 detection of individual cells within microcolonies

We analyzed 40 individual colonies in total and tracked the cells
within them.

In order to track single cells from the fluorescence images, we first
computed the center of the binary shape computed from the DIC ima-
ges of the microcolonies (see appendix E.1). These data had a recor-
ding frequency of 0.1 Hz. In order to know the position for all images
of the fluorescence channel, that were recorded with a frequency of
1 Hz, we performed a cubic spline data interpolation on the x- and
y-component on the colony center. This way, we could correct the
centers of the colonies in the fluorescence images, in order to reduce
effects of colony translations.

Before we tracked the individual cells within a colony, we compu-
ted the background of the images by applying a large scale Gaussian
filter and subtracted its values from the image. Afterwards, we used
a smaller Gaussian filter for smoothing of the fluorescence image. In
order to track single cells in fluorescence images of microcolonies we
used the detection and tracking algorithm developed by Blair et al
[142].

e.4 image analysis of colony assembly experiments

We analyzed data, contributed by Nicolas Biais (Brooklyn College,
New York) and analyzed by Yen Ting Lin (Los Alamos National La-
borator, USA), Johannes Taktikos and Christoph Weber (Harvard Uni-
versity, USA). The data consisted of binary images of the detected ed-
ges of bacterial aggregates that were forming on top of the substrate.
In total 20 movies, each of a duration of up to 189 minutes, were ana-
lyzed. To compute the fraction of cells that were not moving for the
complete experiment, we summed all single binary images of the in-
dividual experiments. Then, we thresholded the summed image, by
setting all those pixel to 1 that also had value 1 in more than 85 % of
the single image and all other pixels to 0.

To compute the numbers of cells from the binary images, we com-
puted the area of the individual regions (corresponding to cells or
colonies) and estimated the cell number from the area. Therefore, we
assumed that aggregates have a shape close to a sphere and the num-
ber of cells is proportional to the volume of the colony. For aggregates
that had a average cell number below 1, we set N = 1.
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E.4 image analysis of colony assembly experiments 121

To compute the substrate density of colonies as a function of the
number of cells in the aggregate, we generated a histogram of colony
sizes with a bin size of δN = 10. The moments of the substrate density
were estimated from a similar histogram, but with bin size of δN = 1

cell.
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F
S I M U L AT I O N D E TA I L S A N D D ATA A N A LY S I S

The described protocols describe how we initialized and analyzed the
simulations of the computational model and give information about
the technical implementation of the simulation. The protocols were
previously published in the supplemental document of Pönisch et
al. [60].

The time steps used in the simulation are given in table F.1, if not
stated otherwise.

f.1 single cell motility

We place an individual cell on top of substrate with a distance similar
to the cell radius and random cell orientation. For the first 2 seconds
of the simulations the cells only interact via the repulsive excluded
volume interactions to remove overlaps of the randomly distributed
cells and the substrate. After this time we turned on the production
and dynamics of pili. To reduce the impact of the initial condition on
our results we simulated a time span of 30 minutes and analyzed the
last 20 minutes. For every parameter set we analyzed the trajectories
of 100 cells and sampled over the parameter set given in table F.2.

Differently to the parameters given in table 2.1 we were using
higher mobilities µtrans = 10 µm/(pN s) and µtrans = 20 (µm pN s)−1

when we studied the parameter set fast. This mobilities correspond to
the friction of water and guarantee that the force a pilus needs to ge-
nerate to move a cell with its characteristic velocity vret is not artifici-
ally increased. For this parameter set we picked ∆t = ∆tdyn = 1× 10−6 s.

The parameter sets over which we sampled are given in table F.2.
For studying the dependence of the motility on the number of pili

we fixed the maximal number of piliNpili and set the pilus production
rate to infinity (see chapter 2.1).

The diffusion coefficient D of the cells were determined from the
mean-squared-displacement

〈(r(t+∆t) − r(t))2〉t = 4D∆t, (F.1)

parameter values

Time Step ∆t [s] 5× 10−6

Time step of pili dynamics ∆tdyn [s] 2× 10−2

Table F.1: Time steps of the simulation.
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parameter values

Pili-substrate detachment force Fd,ps [pN] 10, 20, 30, 180, 300

Pili-substrate detachment time td,ps [s] 5, 10, 30, 60

Pili-substrate binding rate γatt [Hz] 0.5, 1, 2, 15

Table F.2: Sampled parameters for the single cell motility simulations.

parameter values

Cell number per colony N 1000

Pili-pili detachment force Fd,pp [pN] 120, 180, 240, 300, 360

Pili-pili detachment time td,pp [s] 5, 20, 30, 40, 50, 60, 70

Pili-pili binding rate γatt,pp [Hz] 0.25, 0.5, 2

Table F.3: Sampled parameters for the coalescence of colonies.

where r(t) denotes the center of the projected two-dimensional cell
r(t). In order to compute the velocity at time t of a cell or colony
moving along the trajectory r(t) we computed the displacement

∆r(t) = r(t+∆t) − r(t) (F.2)

and set the velocity v(t) = ∆r(t)/∆t with ∆t = 0.5 s. This value is in
the same order of magnitude as those used in experiments [27, 28].
Additionally, we computed the velocity autocorrelation

〈v(t+∆t)v(t)〉t = v2char exp
[
−

t

tchar

]
, (F.3)

where v(t) is the time-dependent velocity of the cell.

f.2 colony coalescence

We initialized two colonies by randomly distributing N cells (with
random orientations) per colonies in two sphere with a radius of
0.85 N1/3 µm and distances slightly larger than the sum of the radii
of the colonies. For the first 2 seconds we only activated the exclu-
ded volume forces in order to remove overlaps of the cells. For the
following 100 s we only allowed pili interactions between the cells of
the individual colonies in order to create stable colonies. After this
time we activated the interactions of pili of both colonies so that the
coalescence could start. We simulated the in silico colonies for 30 mi-
nutes and analyzed the colonies starting from 60 seconds. For every
parameter set we analyzed a single coalescence event (see table F.3).
For those sets that are presented in table 4.2 and for studying the
size-dependence of the coalescence we analyzed at least 14 different
realizations.

In order to compute the height of the bridge forming between two
colonies and the properties of an ellipse fitted to their shape, we pro-
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jected the diplococcus shape of the individual cells onto a plane pa-
rallel to the axis between the centers of the two colonies. From the
projection of the individual cells we can compute the envelope of the
two colonies. In order to compute the bridge height we defined a line
of length 1 µm centered around the COM of the projected envelope
and parallel to the axis connecting the centers of the two colonies. We
moved this line perpendicular to the axis between the colony centers
and defined the height of the bridge as the range for which the whole
line is inside of the colony envelope. The length of the line was chosen
to be small enough so that it was not affected by the circular shape of
the projection and large enough so that the effects of the fluctuations
of single cells close to the surface of the colonies were reduced. For
the late coalescence the results were compared to the short axis of
the ellipse. By computing the central moments of the projected two-
dimensional area of the microcolonies we were able to compute the
properties of the ellipse as explained in [141]. This method allowed
us to measure the bridge height and the ellipse properties in a similar
manner to the analysis of experimental data.

f.3 free single colony

The details of the simulation were previously published in [60].
We initialized a colony by randomly distributing 1700 cells (with

random orientations) in a sphere with radius of approximately 10 µm.
For the first 2 seconds we only activated the excluded volume forces
in order to remove overlaps of the cells. After this time we switched
on the production and the dynamics as described in the main text
(see section 2). We simulated in silico colonies for 30 minutes and
analyzed the properties of the colonies for the last 20 minutes. For
every parameter set (see table F.4) we analyzed a single colony. For
those sets that are presented in the paper we analyzed 10 different
realizations.

For the computation of the mean radius of a colony, we projected
the diplococcus shape of all individual cells onto the substrate. From
the area of the resulting projected colony shape, we could compute
the colony radius from the relation A = πR2.

To compute the diffusion coefficients of cells within a microcolony
as a function of their distance from the COM of the microcolony we
introduced multiple shells defined by a minimal distance dmin and
a maximal distance dmax from the center of the microcolony. After-
wards, we picked those parts of the trajectory for which the cells
solely moved inside of a single shell for at least 10 s. From these tra-
jectories we computed the time-averaged mean squared displacement
(which was additionally averaged over all cells) and estimated the dif-
fusion coefficients. In a similar manner we computed the MSRD. In or-
der to mimic the experimental data, where cells were only tracked in
the midplane, we were only picking cells ±1 µm from the z-position
of the center of the colony and computed the MSRD of their x- and
y-position. Additionally, we only computed the MSRD for cells that
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parameter values

Cell number N 5, 10, 25, 50, 100, 300,

800, 1600, 1700

Pili-pili detachment force Fd,pp [pN] 120, 180, 240, 300, 360

Pili-pili detachment time td,pp [s] 5, 20, 30, 40, 50, 60, 70

Pili-pili binding rate γatt,pp [Hz] 0.25, 0.5, 2

Table F.4: Sampled parameters for the internal dynamics of colonies.

have at least a distance of 5 µm, so that we could reduce correlations
due to direct pili-pili-interactions.

In order to compute the pair correlation function of cells within the
bulk, we computed the center points of the cells and their relative
position to the center of the colony. For every cell we only consider
the radius which is smaller than its distance to the mean surface of
the colony.

In order to compute the diffusion coefficients of cells within a mi-
crocolony as a function of their distance from the COM of the micro-
colony we introduced multiple shells defined by a minimal distance
dmin and dmax from the center of the microcolony. Afterwards, we
picked those parts of the trajectory ri(t) for which cell i solely mo-
ved inside of a single shell for at least 10s. From these trajectories
we computed the time-averaged mean squared displacement (which
was additionally averaged over all cells i) and estimated the diffusion
coefficients D from the relation

〈(ri(t+∆t) − ri(t))2〉i,t = 6D∆t. (F.4)

The mean squared relative distance (see chapter G) was computed in
a similar manner for pairs of cells that are in the same shell.

f.3.1 Internal colony dynamics as a function of the excluded volume con-
stant

We computed the internal properties of individual colonies for strong
pili-pili-interactions (see table 4.2) and different values of kcc = 5000,
10000, 15000, 20000, 25000 pN/µm. The results are almost indepen-
dent of the excluded volume constant for values larger than 10000 pN/
µm. For softer cells the intersections of the cells are too strong and
affect the result.

f.3.2 Colony radius as a function of the cell number

The number of cells Ncells within a microcolony of radius R is propor-
tional to the volume of the colony. Thus, we can write

Ncells = βR
3. (F.5)
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Figure F.1: Internal colony dynamics as a function of the excluded volume
constant kcc (in [pN/µm]). (a) Diffusion coefficient D of cells as
a function of their distance from the center of the colony dcom.
(b) Number of total pili (filled circles) and actively pulling pili
(hollow circles) of a cell as a function of its distance from the co-
lony center. (c) Life time of pili as a function of dcom. Standard
deviation of pili as a function of dcom. (e) Spatial dependence
of the cell number density of colony. (f) Pair correlation function
for different values of kcc. (g,h) Square root of the variance of tan-
gential and normal forces for different values of kcc. (i) Nematic
order parameter of cells as a function of their distance from the
center of the colony dcom.
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Figure F.2: Colony size as a function of cells within the colony. The radius
was computed for spherical colonies simulated with the compu-
tational model presented in chapter 2 (see red dots). The colony
radius corresponds to the radius of a circle having the same area
as the envelope of the two-dimensional projection of a colony
(see black line).

In order to determine the proportionality constant β, we used the
computational model, presented in chapter 2 and found

β = (2.92± 0.05)µm−3, (F.6)

depicted in figure F.2.

f.4 assembly on a substrate

The suggested protocol was previously published in the supplemen-
tary information of [60].

We initialized 800 - 1200 randomly oriented cells on the substrate
with a relative distance to each other that was similar to the cell ra-
dius. The cells were distributed in a 2 dimensional box with periodic
boundaries and a final cell surface density of 0.62 cells/µm2. Half of
the cells had behaved normally (wildtype cells), the other half were
chosen to be mutant cells. For the first two seconds cells only interact
via excluded volume forces until all overlaps of the cells with each ot-
her and the substrate have vanished. After this time we switched on
all pili-mediated interactions and all related interactions of the cells.
We simulated a total duration of 60 minutes.

To define which cells are part of the surface and which cells are part
of the bulk of a microcolony moving over a surface, we computed the
alpha shape of the collection of cocci points of all cells [125, 126].
The underlying idea of this triangulation technique is the motion of
a sensor sphere over the surface of the colonies and the individual
cells. Such a sphere is not allowed to intersect the positions of the
cocci. If any coccus of a cell is touched by such a sphere (thus laying
on the surface of the sphere), the corresponding cell is defined to be
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a surface cell. The only free parameter is the radius Rα = 1 µm which
is defined to be in the order of the cell sizes.
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G
T H E M E A N S Q U A R E D R E L AT I V E D I S TA N C E
( M S R D )

To estimate the diffusion coefficient of two particles randomly mo-
ving within an aggregate that is also performing a random motion,
we define the so called mean squared relative distance (MSRD). The
necessary calculations were published [143] and are presented in the
following.

Two cells a and b at positions ra(t) and rb have the distance

dab(t) = |ra(t) − rb(t)|. (G.1)

This quantity is independent of any translational or rotational motion
of the aggregate in two dimensions. For this distance, we define the
MSRD δMSRD as the squared mean of the change of the distance with
time t:

δMSRD (t) = 〈(dab(t) − dab(0))
2〉. (G.2)

A graphical representation of the quantities is shown in figure G.1.

g.1 derivation of the ensemble - and time - averaged

msrd in two dimensions

To calculate the ensemble-averaged MSRD, we first reduce the mo-
tion of two particles (given by i = a,b) to the motion of an individual
particle. Here, the two particles exhibit a random motion without any
boundary conditions. We assume that the central limit theorem is va-
lid to characterize their motion [51]. The probability density functions
of their positions (x,y), defined in cartesian coordinates, is then given
by a Gaussian distribution

pi(x,y, t) =
1

4πDit
exp

(
−
x2 + y2

4Dit

)
, (G.3)

with the diffusion coefficient Di. The probability density function of
the distance vector between these two particles, starting with an ini-
tial distance d0 in y−direction, is then given by

pab(x,y, t) =
∫∫

dx ′dy ′ pa(x− x
′,y− y ′, t)pb(x

′,y ′, t)

=
1

4πDabt
exp

[
−
x2 + (y− d0)

2

4Dabt

]
, (G.4)

corresponding to the probability density function of a Gaussian random
walker that starts from the position (0,d0) and has a diffusion coeffi-
cient Dab = Da +Db.
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Figure G.1: Sketch of a simplified two-dimensional aggregate, adapted
from [143]. Two particles are initially separated by a distance
dab(0). Within the time τ, they perform random motion in a ci-
rcular domain (see solid lines). However, the aggregate itself is
rotating (as marked by the black dot on the boundary of the
domain) and its center of mass is also moving randomly (grey
line). To quantify the diffusivity of particles, we follow their ab-
solute relative distance as a function of time dab(t), independent
of the motion of the domain.

For d0 = 0 the probability density function of the scalar distance
dab of a Gaussian random walk is given by the Rayleigh distribu-
tion [144, 145],

pray(dab, t) =
dab

2Dabt
exp

(
−
d2ab
4Dabt

)
, (G.5)

with I0 being the modified Bessel function of the first kind. For a
initial distance d0 larger than zero, the probability density function
of the scalar distance dab is given by the Rice distribution [146],

price(dab, t) =
dab

2Dabt
exp

(
−
d2ab + d

2
0

4Dabt

)
I0

(
dabd0
2Dabt

)
. (G.6)

This equation is regularly used in radar and sonar signal processing.
In order to compute the MSRD, we compute the first two moments
of this probability density function:

〈dab(t)〉 =
√
π

4
√
Dabt

exp
[
−

d20
8Dabt

]
×
[
(d20 + 4Dabt)I0

(
d20
8Dabt

)
+ d20I1

(
d20
8Dabt

)]
(G.7)

〈d2ab(t)〉 = d
2
0 + 4Dabt. (G.8)

Here, I1(x) is the modified Bessel function of the first kind. Then, the
ensemble-averaged MSRD is given by

δMSRD = 〈[dab(t) − dab(0)]
2〉

= 〈d2ab(t)〉− 2d0〈dab(t)〉+ d20 (G.9)
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Figure G.2: Mean-squared relative distance for the random motion of two
cells without boundary conditions. Here, Dab = Da +Db = 1 is
the sum of the diffusion coefficients of the individual trajecto-
ries. The figure was adapted from [143]. (a) Ensemble-averaged
MSRD for d0 = 4. For small times t the MSRD follows 2Dabt,
for large times it follow 4Dabt. Additionally, equation G.9 pre-
dicts the behavior of the MSRD for all times. (b) Ensemble-
averaged MSRD for different initial conditions d0, as given by
equation G.9. (c) Time-averaged MSRD for two particles with
different initial distances d0. In both cases the MSRD follows
the function 2Dabt. (d) Ensemble-averaged MSRD for randomly
picked initial values d0.
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where dab(0) = d0. The behavior of this function (see equation G.9) is
shown in figure (see figure G.2a). For d20 � Dabt we can approximate

δMSRD ' 4Dabt (G.10)

and for d20 � Dabt

δMSRD ' 2Dabt, (G.11)

as can be seen in figure G.2a. While d0 does not affect the behavior
for large or small values of the time t (compared to d20/Dab), it affects
the transition between these two limits, as can be seen in figure G.2b.

In order to compute the time-averaged MSRD, defined by

δMSRD,t (∆t) = 〈(dab(t+∆t) − dab(t))
2〉t, (G.12)

we first need to compute the sum of all density functions of distances
for t ∈ [0, T ], given by

p̃rice = lim
T→∞

∫T
0 dt price (d, t)∫T

0 dt
. (G.13)

With u = t/T , this equation can be substituted to

p̃rice = lim
T→∞

∫1
0

du
dab

2DabuT
exp

[
−
d2ab + d

2
0

4DabuT

]
I0

(
dabd0
2DabuT

)
(G.14)

For T →∞ the function within the integral converges

lim
T→∞ d

2DabuT
exp

[
−
d2 + d20
4DabuT

]
I0

(
dd0

2DabuT

)
= 0. (G.15)

An exchange of the limit and the integration is valid because the equa-
tion beneath the integral is uniformly convergent [147]. The resulting
distribution is uniform, what tell us that all distances d are equally
likely and there are no memory effects of the initial distance d0.

In the next step we compute the mean of the MSRD δMSRD(d,∆t)
for this uniform distribution, given by

δMSRD,t(∆t) = lim
g→∞

∫g
0 dd δMSRD(d,∆t)

g
' 2Dab∆t. (G.16)

Again, we use a substitution of the form u = d/g to simplify the
integral. The resulting function is visualized in figure G.2c.

We suggest that the difference of the ensemble-averaged and the
time-averaged MSRD originates from the difference in the initial con-
ditions of the random walks. While we picked the same initial condi-
tion d0 for the computation of the ensemble-averaged MSRD, it fol-
lows from the definition of the time-averaged MSRD that the initial
condition is constantly changing. This idea is supported by ensemble-
averaging the MSRD of two simulated pairs of trajectories with rand-
omly chosen initial distances d0. Check the following section G.2
for more details of the simulation. Therefore, the start points of the
random walks where chosen independently of each other such that
they were randomly distributed within a circle of radius R = 1000. In
this case, we observe that the MSRD shows the same behavior as the
time-averaged one (see figure G.2d).
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g.2 simulation results

In order to study the behavior of the mean squared relative distance
(MSRD), we simulated the trajectories of pairs of Gaussian random
walks (i = a,b) with diffusion coefficients D = Da = Db = 0.5 (given
as a unitless quantity) and an initial distance d0 = 4. By computing
the scalar distance of the 2000 pairs of trajectories, defined in equa-
tion G.1, we can compute the MSRD in the ensemble average (see
figure G.2a). We observe that the MSRD can be approximated by the
equation δMSRD = 4Dt for small times t, and by δMSRD = 8Dt for large
times, as predicted in the previous chapter.

The MSRD can also be computed by performing an time-average.
Therefore, we computed two trajectories consisting of 107 individual
steps, with equal properties as the trajectories simulated for the ensemble-
average. In this case, the MSRD follows δMSRD,t = 4Dt and is indepen-
dent of the initial distance d0 (see figure G.2c).

g.3 effects of radial boundary conditions

Until now, we neglected the role of boundary conditions while stu-
dying the MSRD. In most cases, the cells will move within aggregates
that are spatially confined, as in our case of bacterial microcolonies.
Here, we consider the effects of boundaries by simulating the two-
dimensional motion of the two Gaussian random walkers within a
circle of radius R = 200 (see figure G.1) with reflective boundaries.

Our simulations show that the behavior of the ensemble- and time-
averaged MSRD corresponds to the MSRD with free boundaries for
values of the MSRD that correspond to values smaller than the radius
R of the circle (see figure G.3). For larger values, the MSRD saturates
towards the values δSatur,e for the ensemble average and δSatur,t for the
time average, due to the limited size of the circle. In order to compute
the values of δSatur,e and δSatur,e, we suggest that for large times, the
positions of two particles (i = a,b) within a circle of radius R are
uncorrelated and homogeneously distributed

pcirc(ri) =
1

πR2

1, ri 6 R

0, ri > R
. (G.17)

The probability density function for two independent particles is then
given by

pab,circ(ra, rb) = pcirc(ra)pcirc(rb). (G.18)

To compute the ensemble averaged saturation value of the MSRD,
δSatur,e, we define the distance of the two particles in polar coordinates
(R1,φ1) and (R2,φ2)

dab =|ra − rb|

=

√
(R1 cosφ1 − R2 cosφ2)

2 + (R1 sinφ1 − R2 sinφ2)
2,
(G.19)
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Figure G.3: Mean-squared relative distance for the random motion of two
cells moving within a circle. (a) Time-averaged MSRD with the
scaling 2Dabt and the saturation MSRD δSatur,t. (a) Ensemble-
averaged MSRD following equation G.9 until the saturation
MSRD δSatur,e.

so that

δSatur,e(R,d0) =〈(dab(t) − dab(0))
2〉pab,circ

=R2 + d20 − 2d0f, (G.20)

where

f(R) =
8

π2R4

∫R
0

dR1
∫R
0

dR2

[
R1R2|R1 − R2|E

(
−

4R1R2
(R1 − R2)2

)]
=
8R

π2

∫1
0

du1
∫1
0

du2

[
u1u2|u1 − u2|E

(
−

4u1u2
(u1 − u2)2

)]
' 128

45π2
R (G.21)

and with E(x) being the complete elliptic integral of x. Here, we de-
fine dab(0) = d0. The integral was solved numerically and seems to
be given by 16/45.

The time-averaged saturation value of the MSRD is calculated by
assuming that the initial positions of the particles are homogeneously
distributed within the circle area A and thus we integrate

d0 = |r0,a − r
0,b| (G.22)

over all positions of the two particles within the circle:

δSatur,t(R) =

∫
A

dr0,a

∫
A

dr
0,b δSatur,e(d0)

=2R2 − 2f2. (G.23)

Again, the resulting value of the MSRD δSatur,t can be computed nu-
merically.

The saturation values depend on the initial positions of the two
particles for the ensemble-average and do not depend on the initial
condition for the time average. They are shown in figure G.3.
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chapter 1

v velocity of Brownian particle

v0 initial velocity of Brownian particle

t time

µ friction

Γ Langevin force

Γ0 noise strength

k Boltzmann constant

T temperature

m mass of the Brownian particle

x position of the Brownian particle

D diffusion coefficient of Brownian particle

P probability of a particle to be at a point x at time t

p probability to jump to the right

V drift
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chapter 2

∆t time step

R cocci radius

dcocci cocci distance

r(a)
i , r(b)

i positions of cocci a and b of cell i

r(com)
i center of cell i

kcc cell-cell excl. vol. const.

F(cc)
ij excl. vol. force due to overlap of cells i and j

kcs cell-sub. excl. vol. const.

F(cs)
j excl. vol. force due to coccus j and substrate

F(ps)
k , F(pp)

k pulling forces due to pilus k

µtrans translational mobility

µrotat rotational mobility

lpers pilus persistence length

γprod pili production rate

Nmax maximal pili number

vpro pili protrusion velocity

vret pili retraction velocity

v0 velocity of pilus

l
(cont)
k contour length of pilus k

l
(free)
k free length of pilus k

γret switching rate from protrusion to retraction

lc mean pili length

r(s)
k start point of pilus k

r(e)
k end point of pilus k

kpili pili spring constant

Fstall pili stalling force

Fd,pp pili-pili detachment force

Fd,ps pili-sub. detachment force

td,pp pili-pili detachment time

td,ps pili-sub. detachment time

γatt,pp pili-pili binding rate

γatt,ps pili-sub. binding rate

γ
(sub)
det pili-sub. detachment rate

γ
(pili)
det pili-pili detachment rate

F(tot)
i total force acting on cell i

T(tot)
i total torque acting on cell i

w(tot)
i angular velocity of cell i
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chapter 3

F
(1)
d,ps, F

(2)
d,ps pili-sub. detachment forces

t
(1)
d,ps, t

(2)
d,ps pili-sub. detachment times

γatt,ps pili-sub. attachment rate

µtrans translational mobility

µrotat rotational mobility

γ
(sub)
det pili-sub. detachment rate

Ntotal complete number of pili of a cell

Nl,Nr attached pili on the left and right side

P probability of a motility state

T transition matrix between motility states

Nfree number of non-attached pili

γatt effective attachment rate

Fstall stalling force

kpili pilus spring constant

µtrans translational mobility

vret pilus retraction velocity

vc velocity of the cell

L mean displacement of a pilus

MSD mean squared displacement

t time

r position of the cell

d dimensionality

D diffusion coefficient

VACF velocity autocorrelation function

vchar characteristic velocity

tchar correlation time

lchar correlation length

l
(all)
xyz contour length of a pilus

l
(att)
xy length of an att. pilus projected on substrate
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chapter 4

t time

h,h1,h2 bridge height

th, t0, t1, t2 characteristic times of bridge closure

η viscosity

χ surface tension

h0 relaxed bridge height

γ ratio of short and long axis

a short axis of ellipse

b,γh long axis of ellipse

tγ relaxation time of axis ratio

β initial axis ratio

δMSRD mean squared relative distance

δMSD mean squared displacement

d scalar distance of two cells

D diffusion coefficient

δ0 offset of MSRD

Fd,pp pili-pili detachment force

td,pp pili-pili detachment time

γatt,pp pili-pili binding rate

D0 offset of the diffusion coefficient within colony

Dr magnitude of the motility gradient

lD char. length scale of gradient of motility

ρ cell density

dcom distance from the center of the colony

ω width of the density profile

ρ0 density within the colony bulk

S nematic order parameter

α cell orientation angle

g(r) pair correlation function

R final colony radius

φ volume fraction of a colony

Deff effective diffusion coefficient

Daq diffusion coefficient of a solute in water

∆r displacement
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chapter 6

t, t ′ time

N number of cells in colony

R radius of colony

A projected area of the colony

c density of colonies of size N

Mi ith moment of the density

tdiv division time of bacteria

γdiv division rate of bacteria

Pi(t) probability that i cells will not divide before time t

pi probability density function of division times of i cells

C proliferation term

A aggregation term

F fragmentation term

Kij aggregation rate of colonies with i and j cells

Di diffusion coefficient of colony of i cells

K0 aggregation proportionality constant

k Boltzmann constant

T temperature

η viscosity

F0 fragmentation rate
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